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Abstract

Our work applies the dataflow algorithm to an area outside its traditional scope:

functional languages. Our approach relies on a monadic intermediate language

that provides low-level, imperative features like computed jumps and explicit

allocations, while at the same time supporting high-level, functional-language

features like case discrimination and partial application. We prototyped our work

in Haskell using the hoopl library and this dissertation shows numerous examples

demonstrating its use. We prove the efficacy of our approach by giving a novel

description of the uncurrying optimization in terms of the dataflow algorithm, as

well as a complete implementation of the optimization using hoopl.

i



Acknowledgments

I wish to give my heartfelt thanks to Erin, my very patient and very understanding

wife. She provided invaluable support throughout a long, long project. I also want

to express my deep gratitude to my advisor, Dr. Mark P. Jones, who agreed to

answer the question “So, how do functional language compilers work?” His ideas,

enthusiasm, and willingness to mentor me made this project both challenging and

highly rewarding.

I wish to thank my managers at adp who gave me the time and freedom to

pursue this and other projects: Mark Rankin, Tom Douglass, and Kathy Oullette.

Without their support, I would simply have not been able to afford the time.

I want to give special thanks to my thesis committee, Dr. James Hook and Dr.

Andrew Tolmach, for their time and willingness to review and comment on my

work. Finally, my thanks to the other faculty and staff in the Computer Science

department at Portland State University. I feel blessed that a place full of such

smart, interesting and friendly people was just a little ways away from my home

and work.

ii



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Chapter 1 Introduction 1

Chapter 2 Dataflow Optimization 4
2.1 Control-Flow Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Basic Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 The Dataflow Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Facts and Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.2 Transfer Functions . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 Iteration & Fixed Points . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Dataflow Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Quality of Solutions to the Dataflow Equations . . . . . . . . . . . . . 24

2.6 Applying Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Chapter 3 The Hoopl Library 28
3.1 Hoopl’s API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Control-Flow Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Facts, Meet Operators and Lattices . . . . . . . . . . . . . . . . . . . . 37

3.4 Direction & Transfer Functions . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Iteration & Fixed Points . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Interleaved Analysis & Rewriting . . . . . . . . . . . . . . . . . . . . . 43

3.7 Rewriting with hoopl . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.7.1 Optimization Fuel . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.8 Executing an Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Chapter 4 A Monadic Intermediate Language 52
4.1 Source Language: λC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Mil’s Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Mil Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Allocation as a Side-Effect . . . . . . . . . . . . . . . . . . . . . . . . . 60

iii



4.5 Monadic Thunks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Compiling λC to mil . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.7 Executing mil Programs . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.8 A hoopl-friendly ast For mil . . . . . . . . . . . . . . . . . . . . . . . 70

4.9 Mil cfgs with hoopl . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.10 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.10.1 Monads & Haskell . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.10.2 mlj & sml.net . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Chapter 5 Uncurrying 78
5.1 Partial Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Cost of Partial Application . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Partial Application in mil . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Uncurrying mil blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5 Dataflow Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6 Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.7.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.7.2 Lattice & Meet Operator . . . . . . . . . . . . . . . . . . . . . . 93

5.7.3 Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7.4 Rewrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.7.5 Optimization Pass . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.8 Example: Uncurrying Across Blocks . . . . . . . . . . . . . . . . . . . 104

5.8.1 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Chapter 6 Conclusion & Future Work 119
6.1 Monadic Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.1.1 Inlining Monadic Code . . . . . . . . . . . . . . . . . . . . . . . 120

6.1.2 Dead-Code Elimination . . . . . . . . . . . . . . . . . . . . . . 124

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2.1 Eliminating Thunks . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2.2 Push Through Cases . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3 Hoopl Refinements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3.1 Invasive Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.3.2 Restricted Signatures . . . . . . . . . . . . . . . . . . . . . . . . 132

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

iv



Bibliography 136

Appendix 138

v



List of Figures

2.1 (a) A C-language program fragment. (b) The control-flow graph (cfg) for
the program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 (a): A C-language fragment to illustrate basic blocks. (b): The cfg for (a)
without basic blocks. (c): The cfg for (c) using basic blocks. . . . . . . . 7

2.3 A C program which multiplies its argument, val, by 10 cnt times.
Part (a) shows the original program. In Part (b), we have used constant
propagation to replace the use of m in the loop body with 10. . . . . . . . 9

2.4 Our program, annotated with facts partway through the analysis. Notice
that out(B1) and out(B4) give differing values to i. We use a meet operator
when combining these two values while calculating in(B2). . . . . . . . 10

2.5 Definition of the meet operator, u, for the lattice used in our constant
propagation analysis. v1 and v2 are values in Const. The table shows
how u combines any two values. . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 A control-flow graph illustrating the behavior of u with ⊥ (i.e., unde-
fined) values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.7 Part (a) shows our program annotated with initial facts. In Part (b), we
have updated each out(B) set using Equation (2.4), our transfer function. 16

2.8 This figure shows the values for i calculated by all nodes in our example
program. Part (a) shows the in and out facts associated with each
node, for variable i. Part (b) reproduces the control-flow graph for our
program. After 4 iterations the facts reach a fixed point (i.e., they stop
changing). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.9 The transfer function and associated definitions for the constant propa-
gation analysis. Equation (2.14) shows how out facts are created from
in facts. In(B) facts, for some block B, are created from the out(B) facts
of its predecessors. Facts are combined using the set-wise

∧
operator. . 22

2.10 The dataflow algorithm, using parameters for facts, the meet operator,
direction, and the transfer function. . . . . . . . . . . . . . . . . . . . . . 23

2.11 This figure shows the facts calculated for all nodes in our example
program. Part (a) shows the in and out facts associated with each node.
Part (b) reproduces the control-flow graph for our program. After 5

iterations the facts reach a fixed point (i.e., they stop changing) and we
can see that in(B3) shows that m is always 10, proving we can rewrite
the multiplication safely. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

vi



3.1 Part (a) defines a function using the C language. Part (b) shows the
program after performing dead-code elimination. . . . . . . . . . . . . . 29

3.2 This table shows the four possible block shapes. Each row gives example
statements and a representative cfg using a block of the given shape.
Dashed lines indicate optional blocks. Solid lines show required blocks. 32

3.3 Haskell data declarations for representing the ast of example. . . . . . . 33

3.4 Our example function as a control-flow graph. Part 3.1 (a) uses C syntax
for each statement. Part 3.1 (b) uses the ast given in Figure 3.3. . . . . . 34

3.5 Primitives provided by hoopl for constructing Graph values, represent-
ing cfgs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 A definition that creates a cfg for example, using the ast from Figure 3.3
and the functions shown in Figure 3.5. . . . . . . . . . . . . . . . . . . . . 36

3.7 DataflowLattice and associated types defined by hoopl for representing
and combining facts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.8 Haskell definitions implementing fact and meet definitions for our
liveness analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.9 Hoopl’s FwdTransfer and BwdTransfer types. They can be constructed
with the functions mkFTransfer and mkBTransfer. . . . . . . . . . . . . . . 41

3.10 The transfer function implementing liveness analysis. . . . . . . . . . . . 43

3.11 The FwdRewrite and BwdRewrite types provided by hoopl, as well as
the functions used to construct them, mkBRewrite and mkFRewrite. . . . 46

3.12 The rewrite function for our dead-code elimination optimization. Assign
statements are deleted when they assign to a dead variable. In all other
cases the cfg remains unchanged. . . . . . . . . . . . . . . . . . . . . . . 47

3.13 Hoopl’s types and functions used to execute backwards and forwards
analysis and transformation. BwdPass and FwdPass package the client
program’s definition of lattice, transfer function, and rewrite function.
Except for direction, analyzeAndRewriteFwd and analyzeAndRewriteBwd
behave similarly; they execute the optimization defined by the client
program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.14 deadCode applies the optimization developed so far to a particular pro-
gram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 The syntax of λC. Variables are represented using x, x1, etc. Terms are
represented by t, t1, etc. C represents the name of a given constructor. . 55

4.2 Complete syntax for MIL. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Part (a) gives a λC definition of the composition function; (b) shows a
fragment of the mil program for compose. . . . . . . . . . . . . . . . . . . 61

vii



4.4 Part 4.4 (a) shows a rewritten version of compose that makes closure allo-
cation explicit; Part 4.4 (b) gives a program that evaluates compose a b c.
Note that these programs produce monadic values rather than pure
values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 The mil program which computes main a b c = compose a b c. . . . . . . 64

4.6 Part 4.6 (a) shows a pure value. Part 4.6 (b) shows an impure value. . . . 65

4.7 Part (a) shows two monadic λC functions. The mil blocks that create
and use monadic thunks to execute main are shown in Part (b). . . . . . 66

4.8 Part (a) shows a λC implementation of the monadic composition func-
tion (sometimes called “Kleisli composition”). Part (b) shows a mil

implementation of the same function. . . . . . . . . . . . . . . . . . . . . 68

4.9 Haskell data type representing mil block, bind, and done terms. The C
and O types (from hoopl) give the “shape” of each statement. . . . . . 71

4.10 Haskell data type representing tail terms. . . . . . . . . . . . . . . . . . . 72

4.11 Mil’s instance definition for NonLocal. . . . . . . . . . . . . . . . . . . . . 74

5.1 A Haskell definition in curried style. map1 can be partially applied
directly to produce specialized functions. . . . . . . . . . . . . . . . . . . 79

5.2 The compose function. Part (a) shows our λC definition. Part (b) shows
mil code implementing Part (a). . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Dataflow facts and equations for our uncurrying transformation. . . . . 85

5.4 A mil program we will use to illustrate our implementation of uncurrying. 90

5.5 The types for our analysis. Referring to the sets defined in Figure 5.3,
Clo represents Clo and Fact represents Fact. DestOf is not represented
in our dataflow equations; it describes the behavior of each mil block
that we may use while rewriting. . . . . . . . . . . . . . . . . . . . . . . . 91

5.6 The hoopl DataflowLattice declaration representing the lattice used by
our analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7 Our implementation of the transfer function t from Figure 5.3. . . . . . 95

5.8 Facts about each variable in the main block of our example program
from Figure 5.4. A blank entry means the variable has no facts associated
with it yet. A “·” entry means the fact remains unchanged. . . . . . . . . 97

5.9 The top-level implementation of our uncurrying rewriter.. . . . . . . . . 98

5.10 How rewriter transforms the main block. Each row represents main after
the particular iteration. The first line shows the original program. The
arrows shows the line that changed during each iteration. After the
second iteration, the program stops changing. . . . . . . . . . . . . . . . 99

5.11 The implementation of our uncurrying rewriter. . . . . . . . . . . . . . . 101

5.12 The function that puts together all definitions for our implementation
of the uncurrying optimization. . . . . . . . . . . . . . . . . . . . . . . . . 103

viii



5.13 A λC program that turns a list of elements into a list of lists and its
unoptimized translation to mil. . . . . . . . . . . . . . . . . . . . . . . . . 105

5.14 Development of facts and rewrites applied to the main block of our
example program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.15 Facts that flow between blocks in our example program. Part (a) shows
the cfg before we rewrite main; Part (b) shows the cfg afterwards. The
facts from main only flow to the rest of the cfg after rewriting. . . . . . 107

5.16 Development of facts and rewrites within cons, after facts begin flowing
from main. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.17 Our mil program from Figure 5.13 after applying our uncurrying opti-
mization. We also removed unused blocks and unnecessary bindings
within blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.18 A mil program with looping control-flow. . . . . . . . . . . . . . . . . . . 111

5.19 Our rewritten mil program, showing that we correctly uncurried f @ g
in b2; g @ t remains unchanged. . . . . . . . . . . . . . . . . . . . . . . . 112

5.20 A mil program that demonstrates how free variables can be accidentally
introduced by uncurrying. Part 5.20 (a) shows the original program. In
Part 5.20 (b), rewriting b2 introduced the free variable x. . . . . . . . . . 113

5.21 A mil program demonstrating problems with “call” expressions on the
right-hand side of a bind. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1 The monad laws, as stated by Wadler (1995). The notation “[y 7→ x] m”
means that y should be substituted for x everywhere in m. . . . . . . . 120

6.2 A program that illustrates the construct/destruct pattern. . . . . . . . . . . 128

6.3 Initial form of our function. . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.4 Final form of our function. . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

ix



Chapter 1

Introduction

The dataflow algorithm treats programs as control-flow graphs, with edges repre-

senting execution paths and nodes representing statements or expressions. A

particular dataflow analysis computes some desired property for each node in the

graph based on a static approximation of the program’s run-time behavior. The

results of the analysis can then be used to optimize the program according to some

measure, such as execution time, memory usage, or power consumption.

The first publication of the dataflow algorithm (Kildall, 1973) described a

number of optimizations for programs written in algol 60, an imperative pro-

gramming language. Research and refinements since then have continued to focus

on imperative languages.

In contrast, much research on the analysis and optimization of programs

written in functional programming languages focuses on algebraic, rewrite-based

techniques. This approach searches for syntactic patterns in the program’s text

and rewrites those patterns according to some set of rules.

No technical reason prevents the dataflow algorithm from being applied to

functional language programs, but the technique has not been widely used. Tra-

dition may play a role here, as well as pragmatic reasons. Rewriting programs

according to syntactic patterns, when those programs are written as a set of “equa-

tional” definitions, seems much simpler than specifying transformations based on

1



Chapter 1 Introduction

control-flow analysis.

Programs written in monadic style, as exemplified by the Haskell programming

language, lend an imperative flavor to functional programs. Monadic programs

typically impose explicit control-flow on the execution of the program, give the

appearance of incrementally updating program variables, and allow imperative

side-effects such as writing to the screen or reading input from the user.

This work explores the application of the dataflow algorithm to programs

written in a monadic intermediate language (mil). Mil is a pure, functional language

like Haskell, which requires all programs to be written in monadic style. We will

show that dataflow analysis over mil programs can implement both functional-

language specific and traditional imperative optimizations.

Chapter 2 gives a thorough introduction to the dataflow algorithm in its

traditional setting. We explain the algorithm by applying constant-propagation to a

simple C program. We introduce fundamental definitions used throughout this

thesis, such as control-flow graphs and basic blocks. We discuss the theoretical

basis of the algorithm, including its correctness and the quality of its solutions.

Finally, we give the dataflow equations that can be used to describe any particular

dataflow analysis.

In Chapter 3, we describe hoopl (Ramsey, Dias, and Peyton Jones, 2011), a

Haskell implementation of the dataflow algorithm that we used to prototype all

dataflow analyses described in this work. This chapter follows the structure of

Chapter 2, emphasizing the connection between the theoretical description of the

dataflow algorithm and hoopl’s implementation. We use dead-code elimination for

a subset of the C programming language as a running example.

2



Chapter 1 Introduction

We introduce our monadic intermediate language (mil) in Chapter 4, describing

its syntax, features, and design goals. We also introduce λC, a simple, high-level

functional language that we use to define example programs that will be translated

to mil. We also discuss hoopl’s impact on the ast that we implemented to

represent mil programs.

Chapter 5 brings together the concepts introduced in previous chapters and

describes the uncurrying optimization. We motivate the optimization, formulate it

in terms of the dataflow algorithm, and show how it applies to mil programs. We

then describe how we implemented the optimization using hoopl.

In Chapter 6 we discuss several ways in which this work could be extended.

We describe how mil programs can be optimized using only the monad laws. We

briefly discuss dead-code elimination in mil programs. We also sketch a more

aggressive transformation of mil programs that uses dataflow analysis of case

alternatives to eliminate unnecessary allocations. We offer some reflections based

on our experience with hoopl, proposing ways in which we feel the library could

be improved. Finally, we summarize our goals and the contributions of this work.

3



Chapter 2

Dataflow Optimization

In 1973, Gary Kildall described a framework for analyzing and transforming pro-

grams, calling it a global analysis algorithm (Kildall, 1973). His algorithm represents

programs as directed graphs, where each node corresponds to a statement or ex-

pression in the program. The edges between nodes represent possible runtime

execution paths. An optimizing function is applied to each node in the graph,

transforming an input pool of facts into an output pool. When cycles occur in the

graph, output pools can change input pools, causing the algorithm to apply the

optimizing function again. His algorithm terminates when all output pools stop

changing; the facts gathered can then be used to transform the program.

Though Kildall named his algorithm “global,” he also applied it to smaller

pieces of programs such as subroutines or function definitions. He showed that

some analyses required reversing the input and output pools; in other words,

running the algorithm backwards.

This chapter describes Kildall’s algorithm, now known as the dataflow algorithm

or the technique of dataflow analysis. In Section 2.1 we define control-flow graphs

(cfgs), which the directed graphs representing the program are now called. Sec-

tion 2.2 introduces “basic blocks,” not something originally defined by Kildall

but now a fundamental way of representing nodes in cfgs. We show the modern

representation of the dataflow algorithm in Section 2.3, introducing terms and

4



Chapter 2 Dataflow Optimization

definitions that have been used since Kildall’s original work. In Section 2.4 we

show the general form of dataflow equations that can be used to describe any data-

flow analysis; we will use these equations later in the thesis to describe our own

analyses. Section 2.5 discusses the trustworthiness of the dataflow algorithm —

that is, it shows how we can know a particular analysis has given the best possible

solution. Transforming programs based on a dataflow analysis is discussed in

Section 2.6, and we conclude in Section 2.7.

2.1 Control-Flow Graphs

Figure 2.1 shows a simple C program and its control-flow graph (cfg). Each node

in Part (b) represents a statement or expression in the original program. For

example, B1 and B2 represent the assignment statements on line 1. Notice that the

declaration of c does not appear in a corresponding node; because the declaration

does not cause a runtime effect, we do not represent it in the graph. Nodes E and

X designate where program execution enters and leaves the graph. If the graph

represented the entire program, we would say execution begins at E and terminates

at X. However, the cfg may be embedded in a larger program, for which reason

we say enters and leaves.

Directed edges show the order in which nodes execute. The edges leaving

B3 (representing the test “if(a > b)” on line 2) show that execution can branch

to either B4 (when a > b) or B5 (when a 6 b). A node followed by multiple

successors (i.e., where multiple edges leave the node) represents a branch or

conditional statement. Any one of the successor nodes may execute following the

conditional statement.

In this particular example, it is obvious that B5 will always execute after B3,

5
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1 int a = 1, b = 2, c;
2 if(a > b)
3 c = 4;
4 else
5 c = 3;

6 print(c);

E

a = 1
B1

b = 2
B2

if(a > b)
B3

c = 4
B4

c = 3
B5

print(c)
B6

X
(a) (b)

Figure 2.1: (a) A C-language program fragment. (b) The control-flow graph
(cfg) for the program.

because the test will always fail. However, control-flow graphs show possible

execution paths. They do not take into account the actual runtime values in a given

graph. While in this case it is easy to determine how the program will behave, in

general we cannot predict behavior without running the program.

The dataflow algorithm approximates a program’s runtime state by analyzing

the control flow of the program. Control-flow graphs show the order in which

expressions and statements in a program are evaluated. It is the job of our dataflow

analysis to determine how to make the program more efficient.

2.2 Basic Blocks

Consider the C-language fragment and control-flow graphs (cfg) in Figure 2.2.

Part (b) shows the cfg for Part (a): a long, straight sequence of nodes, one after

6
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another. Part (c) represents the assignment statements on lines 1 – 4 as a basic block:

a sequence of statements with one entry, one exit, and no branches in-between.

Execution cannot start in the “middle” of the block, nor can it branch anywhere

but at the end of the block. In fact, Part 2.2 (b) also shows four basic blocks — they

just happen to consist of one statement each.

1 int a = 1;
2 int b = 2;
3 int c = 3;
4 int d = 4;
5 ...

a = 1
B1

b = 2
B2

c = 3
B3

d = 4
B4

a = 1
b = 2
c = 3
d = 4

B5

(a) (b) (c)

Figure 2.2: (a): A C-language fragment to illustrate basic blocks. (b): The
cfg for (a) without basic blocks. (c): The cfg for (c) using basic
blocks.

The representation given in Part (c) has a number of advantages. It tends to

reduce both the number of nodes and the number of edges in the graph. The

dataflow algorithm maintains two sets of facts for every node — reducing the

number of nodes obviously reduces the number of facts stored. The algorithm

also iteratively propagates facts along edges — so reducing the number of edges

7
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reduces the amount of work we need to do. When rewriting, blocks allow us to

move larger amounts of the program at once. It also can be shown (see Aho et al.,

2006) that we do not lose any information by collapsing statements into blocks.

For efficiency and brevity, we will work with basic blocks rather than statements

from here forward.

2.3 The Dataflow Algorithm

Kildall’s dataflow algorithm provides a general-purpose mechanism for analyzing

control-flow graphs of programs. The algorithm itself does not mandate a specific

analysis. Rather, it is parameterized by the choice of facts, meet operator, transfer

function, and direction. The facts and meet operator form a lattice. Together, they

approximate some property of the program that we wish to analyze. The transfer

function transforms facts to mimic the flow of information in the control-flow

graph. The direction is dictated by the type of analysis — each particular analysis

runs forwards or backwards.

Consider Figure 2.3, Part (a), which shows a C function containing a loop that

multiplies the argument by 10 some number of times. Line 2 declares m and assigns

it the value 10. The function uses m in the loop body on Line 4 to repeatedly

multiply the value passed in.

This function is just used for illustration — we do not expect anyone would

actually write code this way (after all, mult10 is just 10 * val * cnt). In any case,

the program in Figure 2.3 (a) can be transformed by replacing the variable m with

10 in the loop body. This may allow the compiler to generate code that directly

multiplies val times 10 and saves using a register to hold the value of m. We can

use a dataflow analysis known as constant propagation to justify this transformation.

8
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1 int mult10(int cnt, int val) {
2 int m = 10, n = 0;
3 for(int i = 0; i < cnt; i++)
4 n += val * m;

5 return n;
6 }

1 int mult10(int cnt, int val) {
2 int m = 10, n = 0;
3 for(int i = 0; i < cnt; i++)
4 n += val * 10;

5 return n;
6 }

(a) (b)

Figure 2.3: A C program which multiplies its argument, val, by 10 cnt
times. Part (a) shows the original program. In Part (b), we have
used constant propagation to replace the use of m in the loop body
with 10.

The constant propagation analysis recognizes when a variable’s value does not

change in some context and then replaces references to the variable with the

constant value. Figure 2.3, Part (b) shows the optimized program, replacing m with

10 on Line 4.

2.3.1 Facts and Lattices

Constant propagation determines if each variable’s value changes during execution.

The analysis approximates the actual values of the variables, as we cannot in general

determine their exact value. We will place the value of each variable into one of

three categories at each point in the control-flow graph: unknown, a known integer

constant, or indeterminate. Unknown, represented by ⊥ (“bottom”), is the initial

value for all variables in our analysis. A known integer constant, C ∈ Z, means

our analysis identified that the variable was assigned a specific value that does

not change. Indeterminate, indicated by > (“top”), means our analysis could not

identify a constant value for the variable. Together, {⊥,>} ∪Z forms a set which

9
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m = 10
n = 0
i = 0

B1

i < cnt
B2

n += val * m
B3

i++
B4

return n
B5

out(B1) : {(i, 0)}

out(B4) : {(i,>)}

in(B2) : {(i,>)}

Figure 2.4: Our program, annotated with facts partway through the analysis.
Notice that out(B1) and out(B4) give differing values to i. We
use a meet operator when combining these two values while
calculating in(B2).

we will denote as Const.

Figure 2.4 shows the control-flow graph of our program, annotated with facts

about the variable i before and after nodes B1, B2 and B4. This analysis defines

facts as pairs, (a, x), where a is the name of a variable and x ∈ Const. The in sets

represent the value of the variables before the statement in the node executes; the

out sets give the value of the variables afterwards. Together these sets represent

our knowledge about each variable’s value at each point in the program.

Constant propagation is a forwards analysis, so the values for each in set are

calculated based on the out values of its predecessors. Figure 2.4 shows the facts

computed partway through this analysis, concentrating on the nodes that reference

i: B1, B2 and B4. B2 has two predecessors: B1 and B4. Their out sets, out(B1)

10
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and out(B4), give differing values to i: 0 and >. To combine these values when

computing in(B2), we use a meet operator.

The meet operator, u, defines how we will combine values in Const. Figure 2.5

gives the definition of u. For any value of x ∈ Const, ⊥u x results in x. Conversely,

x u > results in >. Two differing constants, C1 and C2, result in >, while equal

constants give the same constant.

v1 v2 v1 u v2

⊥ x x
x > >

C1 C2 > (C1 6= C2)
C1 C2 C1 (C1 = C2)

Figure 2.5: Definition of the meet operator, u, for the lattice used in our
constant propagation analysis. v1 and v2 are values in Const.
The table shows how u combines any two values.

Our definition of u allows us to distinguish variables for which we have no

information from those with non-constant values. This matches the definition of

the C language, where a variable that is not initialized has an undefined value. This

allows us to legally transform some programs by assuming the undefined variable

has the best possible value. For example, Figure 2.6 shows a block with two

predecessors. Out(B1) has the fact (x, 1), while out(B2) says (x,⊥). Our definition

of u intuitively says that, when we do not know anything about a variable, we can

use the information we already have instead. Out(B2) adds no information about

x; we can assume it is 1, the best possible value. Our definition of u follows that

intuition and tells us that in(B3) should be (x, 1u⊥), or (x, 1).

We would not make this assumption if we wished to warn the programmer that

11
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x = 1
B1

out(B1) : {(x, 1)}

· · ·
B2

out(B2) : {(x,⊥)}

y = x
B3

in(B3) : {(x, 1u⊥)}

Figure 2.6: A control-flow graph illustrating the behavior of u with ⊥ (i.e.,
undefined) values.

a potentially uninitialized variable could be used. In that case, we would define u

such that x u⊥ was ⊥. Then, when the fact (x,⊥) appeared, we could warn that a

variable might be used before being initialized. Similarly, if our language defined

an initial value for all variables, our assumption would have no effect. We could

use the same definition, but no variable would have the value ⊥ — each would

have a known initial value.

We have defined u on elements in Const, but our facts are pairs (a, x) where

a is a variable and x a value in Const; in and out are sets of facts. Therefore, we

define the ∧ (“wedge”) operator to apply u to sets of facts (F1 and F2 below):

F1 ∧ F2 = {(a, x1 u x2) | (a, x1) ∈ F1, (a, x2) ∈ F2}
∪ {(a, x1) | (a, x1) ∈ F1, a 6∈ dom(F2)}
∪ {(a, x2) | (a, x2) ∈ F2, a 6∈ dom(F1)} (2.1)

dom(F) = {a | (a, x) ∈ F} (2.2)

Our ∧ operator acts like union when a variable in F1 does not appear in the

domain of F2; likewise for a variable only in F2. When a variable appears in both

F1 and F2, the values for the variable are combined using u.

12
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To compute in(B), we apply ∧ to each out set of B’s predecessors. We use a

subscripted
∧

to indicate we combine all of the out sets into one using ∧:

in(B) =
∧

P∈pred(B)

out(P). (2.3)

With these definitions, we can now show how the in(B2) set in Figure 2.4 is derived:

in(B2) =
∧

P∈pred(B2)

out(P)

Predecessors of B2; Equation (2.3).
= out(B1) ∧ out(B4)

Definition of out(B1) and out(B4).
= {(i, 0)} ∧ {(i,>)}

Equation (2.1).
= {(i, 0u>)}

Definition of u from Figure 2.5.
= {(i,>)}

Definition of in(B2).
= {(i,>)}.

Together, Const and u form a lattice.1 The lattice precisely defines the facts

computed in our analysis. In this case, the lattice represents knowledge about a

variable’s value. Each specific dataflow analysis computes different facts, but those

facts are always represented by a lattice.

2.3.2 Transfer Functions

The dataflow algorithm calculates new facts using a transfer function. The transfer

function is specific to both the analysis performed and the semantics of the source

language for the programs that are analyzed. In principle, each node in the graph

1The lattice can also have a join operator, but for our purposes we solely use the meet.
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can have its own transfer function, but in practice the function is defined by cases

for each statement or expression in the language.

In a forwards analysis, the transfer function computes the out set for a given

node. In a backwards analysis, the transfer function computes the in set. That is,

a forwards analysis computes facts that hold after a node executes. A backwards

analysis computes facts that were true before a node executed. In both cases, the

transfer function also considers known facts (i.e., in facts for forwards, out for

backwards) as well as the statements in the node.

For our example analysis, only two kinds of statements can affect the facts we

calculate: constant and non-constant updates. A constant update is one of the

form a = C, where C is a known integer value. A non-constant update is any

other type of assignment; in our example, something like i++. Any other type of

statement will have no effect on our facts.

We define a transfer function, t, for our analysis in terms of statements in our

source language. Our function takes a set of input facts (F), and a statement; it

produces a set of output facts:

t(F, a = C) = {(a, C)} ∪ (F \ uses(F, a))
t(F, a++) = {(a,>)} ∪ (F \ uses(F, a))

t(F, a += b) = {(a,>)} ∪ (F \ uses(F, a))
t(F, s) = F

uses(F, a) = {(a′, x) | (a′, x) ∈ F and a = a′}.

(2.4)

When a node contains a constant update (a = C), then Equation (2.4) adds that

fact to the input set. For a non–constant update, a new fact (a,>) is always added

to the output set. In both cases, all mentions of a in the input set are removed

before being combined with the new fact — this ensures that no more than one
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fact per variable exists in our fact set.

The definition in Equation (2.4) matches our intuition for constant propagation.

When we know a variable is assigned a constant, we add that fact to our knowledge.

When we know it is changed in a non-constant way, we update our knowledge

to show we no longer know the value of the variable. If the statement is not an

assignment, we leave the facts unchanged.

Figure 2.7, Part (a), shows our program, annotated with initial in and out

facts. Figure 2.7, Part (b), shows the same graph with annotations updated using

Equation (2.4). The assignments in B1 create the facts (m, 10), (n, 0), and (i, 0) in

out(B1). The assignment to n in B3 is a non-constant update so out(B3) contains

(n,>). Similarly, the increment to i in B4 creates the fact (i,>) in out(B4).

Notice that the updated out sets do not affect subsequent in sets. In(B3) does

not contain the fact (m, 10) from out(B1). In(B2) also does not show the facts (i,>)

or (i, 0) from either out(B4) or out(B2). The next section on iteration will discuss

how we update in sets as out sets change.

2.3.3 Iteration & Fixed Points

Figure 2.7 hints that facts develop over time during analysis. In fact, the transfer

function is applied to each node in turn, creating new facts from old, until the

facts stop changing. In other words, the control-flow graph is analyzed iteratively

until all out (in the case of a forwards analysis) or in (in the case of a backwards

analysis) sets reach a fixed point.

Figure 2.8, Part (a) shows how the in and out sets for each node change during

our analysis. The “zeroth” iteration corresponds to the initial value for all facts:

everything is ⊥ (i.e., unknown). Reading from left-to-right gives the in and out
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m = 10
n = 0
i = 0

B1

i < cnt
B2

n += val * m
B3

i++
B4

return n
B5

in(B1) : {(m,⊥), (n,⊥), (i,⊥)}

out(B1) : {(m,⊥), (n,⊥), (i,⊥)}

in(B2) : {(m,⊥), (n,⊥), (i,⊥)}

out(B2) : {(m,⊥), (n,⊥), (i,⊥)}

in(B3) : {(m,⊥), (n,⊥), (i,⊥)}

out(B3) : {(m,⊥), (n,⊥), (i,⊥)}

in(B4) : {(m,⊥), (n,⊥), (i,⊥)}

out(B4) : {(m,⊥), (n,⊥), (i,⊥)}

in(B5) : {(m,⊥), (n,⊥), (i,⊥)}

out(B5) : {(m,⊥), (n,⊥), (i,⊥)}
(a)

m = 10
n = 0
i = 0

B1

i < cnt
B2

n += val * m
B3

i++
B4

return n
B5

out(B1) : {(m, 10), (n, 0), (i, 0)}

in(B2) : {(m,⊥), (n,⊥), (i,⊥)} in(B3) : {(m,⊥), (n,⊥), (i,⊥)}

out(B3) : {(m,⊥), (n,>), (i,⊥)}

in(B4) : {(m,⊥), (n,⊥), (i,⊥)}

out(B4) : {(m,⊥), (n,⊥), (i,>)}
(b)

Figure 2.7: Part (a) shows our program annotated with initial facts. In
Part (b), we have updated each out(B) set using Equation (2.4),
our transfer function.
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Iteration: 0 1 2 3 4

in(B1) ⊥ ⊥ ⊥ ⊥ ⊥
out(B1) ⊥ 0 0 0 0

in(B2) ⊥ ⊥ > > >
out(B2) ⊥ ⊥ > > >

in(B3) ⊥ ⊥ ⊥ > >
out(B3) ⊥ ⊥ ⊥ > >

in(B4) ⊥ ⊥ ⊥ ⊥ >
out(B4) ⊥ > > > >

in(B5) ⊥ ⊥ ⊥ > >
out(B5) ⊥ ⊥ ⊥ > >

m = 10
n = 0
i = 0

B1

i < cnt
B2

n += val * m
B3

i++
B4

return n
B5

(a) (b)

Figure 2.8: This figure shows the values for i calculated by all nodes in our
example program. Part (a) shows the in and out facts associated
with each node, for variable i. Part (b) reproduces the control-
flow graph for our program. After 4 iterations the facts reach a
fixed point (i.e., they stop changing).

facts for a given node at each iteration of the analysis. The control-flow graph is

reproduced in Part (b). Following the control-flow between nodes shows which

out sets are used to calculate in sets.

Consider the value for i in in(B2), the node that tests the condition i < cnt.

In the first iteration, in(B2) still assigns ⊥ to i. Equation (2.3) states that in(B2) is

derived from the out sets of B2’s predecessors: B1 and B4. By Equation (2.3) we

can calculate the value of i in in(B2). Crucially, the out set used comes from the

previous iteration of the analysis, which we emphasize by attaching the iteration
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number to each set:

in(B2)
1 =

∧
P∈pred(B)

out(P).

= out(B1)
0
∧

out(B4)
0

= {. . . , (i,⊥), . . . } ∧ {. . . , (i,⊥), . . . }
= {. . . , (i,⊥u⊥), . . . }
= {. . . , (i,⊥), . . . } .

Now consider the second iteration, where in(B2) assigns > to i. out(B1) gives i

the value 0 (by i = 0). However, out(B4) assigns i the value >, because i++ is a

non-constant update. We can see why (i,>) ∈ in(B2) by Equation (2.3). Again we

attach the iteration number to each set, emphasizing its origin:

in(B2)
2 = out(B1)

1
∧

out(B4)
1

= {. . . , (i, 0), . . . } ∧ {. . . , (i,>), . . . }
= {. . . , (i, 0u>), . . . }
= {. . . , (i,>), . . . } .

Notice how the conflicting values for i are resolved with the u operator. The

value of i in out(B2) has reached a fixed point with this iteration; it will no longer

change.

The above example raises an important question: how do we know that our

analysis will terminate? Will the algorithm iterate endlessly over the cfg, updating

facts and never stopping? The answer is that the dataflow algorithm will terminate

if our lattice has finite height and a monotone transfer function.

Let us begin with the lattice. Consider again the meet operator, u, defined in

Figure 2.5 and our set of values, Const:
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Const = {⊥,>} ∪Z.

⊥u x = x.
x u> = >.

C1 u C2 = >, where C1 6= C2.
C1 u C1 = C1.

The definition of u imposes a partial order on the values in Const. That is, we

can define an operator, v, such that for all x and y in Const:

x v y if and only if x u y = y. (2.5)

That is, x is “less than or equal to” y only when x u y equals y.

We now define the height of our lattice as the longest possible ordering of values

in Const such that:

x1 v x2 . . . v xn, where x1 6= x2 6= · · · 6= xn. (2.6)

That is, the height is the longest possible path from the “lowest” to “highest”

element of the lattice where we do not repeat any values and where the v relation

holds among all values.

We can more succinctly define the height using a strict “less than” ordering.

First, the @ relation:

x @ y if and only if x u y = y and x 6= y. (2.7)
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And now we can redefine height as the largest n such that:

x1 @ x2 . . . @ xn. (2.8)

We can show by contradiction that the height of our lattice is 3. Suppose there

exists x1 @ x2 @ x3 @ x4. If x4 is >, then x3 must be an integer or ⊥. If x3 is ⊥, by

Equation (2.8), there is no such x2 such that x2 @ ⊥. Therefore, x3 cannot be ⊥. If

x3 is an integer, again by Equation (2.8), x2 must be ⊥. In turn, there is no such

x1 such that x1 @ ⊥. Therefore, x4 cannot be > and in fact, by similar arguments,

it cannot exist. But we know that, for all C ∈ Z, ⊥ @ C @ >, which is a path of

length 3, so it follows that the height of our lattice must be 3.

Now let us address the transfer function. A monotone function has the following

property:

f (x) v f (y) whenever x v y. (2.9)

That is, if x is “less than or equal to” y, f (x) will also be “less than or equal to”

f (y).

The transfer function moves our facts along the lattice. The lattice represents

the information we have gathered during our analysis. In turn, the ordering of

values represents “how much” we know. That is, when a variable is assigned

⊥, we do not know anything about it. If it is assigned >, we have seen “too

many” assignments (or some other update). A monotone transfer function always

increases (or does not change) the information we have. For all statements, our

transfer function either does not change the set of facts or it updates them so a

given variable is either associated with some C ∈ Z or the > value. Therefore, our
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transfer function must be monotone.

2.4 Dataflow Equations

As stated at the beginning of this chapter, the dataflow algorithm specifies four

parameters: facts, meet operator, transfer function, and direction. The prior

section presented each parameter for the constant propagation analysis separately.

Figure 2.9 presents all of them together, as a set of dataflow equations. Pairs of

elements from Const and Var define Fact, our set of facts. Equation (2.11)

defines our meet operator, ∧, on Fact values. Our transfer function t, defined by

Equation (2.12), shows how we create new facts based on the statements in each

node and our existing facts. Equation (2.14) shows that we compute out(B) using

the transfer function t and the in(B) facts for the block. Equation (2.15) states

that we apply ∧ to all of the out sets for the predecessors of a block B in order to

calculate in(B). Together, Equations (2.14) and (2.15) specify a forwards dataflow

analysis.

We can define an iterative dataflow algorithm in terms of these parameters.

Figure 2.10 gives the algorithm for a forwards analysis.2 On Line 1, we initialize

all out and in sets to some suitable initial value from Fact. The superscript on in

and out sets refer to sets from the ith iteration; initialization constitutes the “zeroth”

iteration. Sometimes the entry node’s out set gets special treatment, in which case

we could add the line:

Out(Entry )0 = v, v ∈ Fact.

However, out(Entry) normally gets the same value as other out sets.

2The backwards case is almost identical.
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Facts
Const = {⊥,>} ∪Z.

Var = Set of all variables.
Fact = Var×Const.

Meet

F1 ∧ F2 =
{(a, x1 u x2) | (a, x1) ∈ F1, (a, x2) ∈ F2}
∪ {(a, x1) | (a, x1) ∈ F1, a 6∈ dom(F2)}
∪ {(a, x2) | (a, x2) ∈ F2, a 6∈ dom(F1)},

(2.11)

where F1, F2 ∈ Fact,u as in Figure 2.5, dom from Equation (2.2).

Transfer
t(F, a = C) = {(a, x u C), when (a, x) ∈ F or

(a, C), when a 6∈ dom(F)} ∪
F \ uses(F, a),

where F ∈ Fact, C ∈ Z.
t(F, a++) = {(a,>)} ∪ (F \ uses(F, a)),

where F ∈ Fact.
t(F, a += b) = {(a,>)} ∪ (F \ uses(F, a)).

where F ∈ Fact. (2.12)

uses(F, a) = {(a, x) | a ∈ dom(F)},
where F ∈ Fact, a ∈ Var. (2.13)

Direction
out(B) = t(in(B), s), (2.14)

where s a statement in block B.
in(B) =

∧
P∈pred(B)

out(P) (2.15)

pred(B) = Predecessors of block B.

Figure 2.9: The transfer function and associated definitions for the constant
propagation analysis. Equation (2.14) shows how out facts are
created from in facts. In(B) facts, for some block B, are created
from the out(B) facts of its predecessors. Facts are combined
using the set-wise

∧
operator.
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1 in(B)0 = u, out(B)0 = f , ∀ nodes B; f , u ∈ Fact
2 do {
3 in(B)i+1 =

∧
P ∈ pred(B)

outi(P)

4 out(B)i+1 = t(in(B)i, B)
5 } until out(B)i+1 = out(B)i, ∀ B

Figure 2.10: The dataflow algorithm, using parameters for facts, the meet
operator, direction, and the transfer function.

The main loop of the algorithm always executes at least once. On Line 3, we

calculate in facts for each node B in the next iteration, in(B)i+1, by applying ∧

to the outi sets of B’s predecessors from the current iteration. Line 4 calculates

out(B)i+1 for each node by applying the transfer function, t, to that node, along

with in(B)i, the in facts for the current iteration.

Line 5 checks if all out i+1 sets are equal to their previous value, outi. If not, the

loop repeats. Otherwise the algorithm terminates. The final values for each out(B)

set then hold the facts representing the result of our analysis.

We have presented the iterative, forwards dataflow algorithm and shown

how the algorithm can be parameterized for a particular analysis. We gave the

parameterization for our constant propagation analysis in Figure 2.9. We know

the algorithm will terminate if our transfer function is monotone and our lattice

has finite height. However, we have not discussed how to measure the results our

analysis gives us — how do we know that they are the best possible? We will

address that question in the next section.
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2.5 Quality of Solutions to the Dataflow Equations

Aho (Aho et al., 2006) shows that for a dataflow analysis defined with a finite

lattice and monotone transfer function, Figure 2.10 will compute a maximum fixed

point. A maximum fixed point means that for any F = out(B) computed by the

algorithm, no other F′ can be computed such that F @ F′. In other words, the

process described in Figure 2.10 will compute out facts with the best possible

information that our algorithm is capable of.

The maximum fixed point solution differs from the ideal solution in that the

maximum fixed point solution may make more conservative estimates than neces-

sary. In particular, the algorithm does not consider knowledge about branches that

will never be taken. For example, the C program from Figure 2.1 (a) will never

execute Line 3, because the test if(a > b) is always false:

1 int a = 1, b = 2, c;
2 if(a > b)
3 c = 4;
4 else
5 c = 3;
6 ...

Our algorithm, however, does not take such conditions into account. The ideal

solution considers only the paths that will be taken by the program. Determining

the actual paths taken is an undecidable problem — thus we settle for the maximum

fixed point. Fortunately, the algorithm is conservative — it never ignores (or adds)

paths — so we can be sure that its analysis will never be wrong, just that it may

not be as good as the ideal.
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2.6 Applying Results

Figure 2.3, Part (a) on Page 9 gave a sample program that we wished to optimize

using a constant propagation dataflow analysis. Figure 2.3, Part (b) gave the result,

replacing all occurrences of m with 10. Now, knowing the dataflow algorithm and

the equations for constant propagation, we can derive how that transformation is

made.

Figure 2.11 gives the facts calculated for all nodes in our program, during each

iteration of the analysis. The first iteration calculates that out(B1) assigns m the

value 10, due to the assignment m = 10 on Line 2. The second iteration propagates

this value to in(B2) and in turn to out(B2), because the test on Line 3 does not

affect m. In the third iteration, we see the same with in(B3) and out(B3) on Line 4.

The analysis continues for two more iterations as other values propagate, but at

this point we have all the information we need to optimize the program. Once the

analysis reaches a fixed point, we can safely replace all occurrences of m with 10,

resulting in the optimized program given in Figure 2.3, Part (b).

We have now seen how we can use constant propagation to optimize a simple

program. Typically many more optimizations will be run over the same code, each

(hopefully) improving it a little more. For example, we could use an optimization

called dead-code elimination to remove the declaration of m altogether from our

optimized program, as it is no longer used.

2.7 Summary

This chapter gave an overview of dataflow optimization. The dataflow algorithm gives

a general technique for applying an optimizing function to the control flow graph (cfg)
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Iteration: 0 1 2 3 4 5
m n i m n i m n i m n i m n i m n i

in(B1) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
out(B1) ⊥ ⊥ ⊥ 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0

in(B2) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 10 0 > 10 > > 10 > > 10 > >
out(B2) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 10 0 > 10 > > 10 > > 10 > >

in(B3) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 10 0 > 10 > > 10 > >
out(B3) ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ > ⊥ 10 > > 10 > > 10 > >

in(B4) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ > ⊥ 10 > > 10 > >
out(B4) ⊥ ⊥ ⊥ ⊥ ⊥ > ⊥ > > ⊥ > > 10 > > 10 > >

in(B5) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 10 0 > 10 > > 10 > >
out(B5) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 10 0 > 10 > > 10 > >

m = 10
n = 0
i = 0

B1

i < cnt
B2

n += val * m
B3

i++
B4

return n
B5

(a) (b)

Figure 2.11: This figure shows the facts calculated for all nodes in our
example program. Part (a) shows the in and out facts associated
with each node. Part (b) reproduces the control-flow graph for
our program. After 5 iterations the facts reach a fixed point (i.e.,
they stop changing) and we can see that in(B3) shows that m is
always 10, proving we can rewrite the multiplication safely.

representing a given program. The optimizing function computes facts about each

node in the graph, using a transfer function. A given analysis can proceed forwards

(where in(B) facts are used to produce out(B) facts) or backwards (where out(B)

facts are used to produce in(B) facts). Each optimization defines a specific meet

operator that combines facts for nodes with multiple predecessors (for forwards

analysis) or successors (for backwards). We compute facts iteratively, stopping

when they reach a fixed point. Finally, we rewrite the cfg using the facts computed
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as a guide. The meaning of our program does not change, but its behavior may be

“better,” whatever that means for the particular optimization applied.
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The Hoopl Library

The dataflow algorithm describes a method for analyzing programs based on

the computation of facts between nodes in the program’s control-flow graph.

The hoopl library (Ramsey, Dias, and Peyton Jones, 2011), written in Haskell,

provides a framework for using the dataflow algorithm. Hoopl enables the user to

implement their own analyses for their own programming language. A thorough

description of the library’s implementation can be found in the authors’ paper

(Ramsey, Dias, and Peyton Jones, 2010); here, we discuss the abstractions they

provide and how to use them.

Hoopl’s implementation follows a variation of the dataflow algorithm described

by Lerner, Grove and Chambers (2002). In brief, Lerner and colleagues’ dataflow

algorithm interleaves analysis and transformation. While this technique does not

provide any better quality solutions than Kildall’s original formulation (1973), it

makes the composition of multiple dataflow analyses much simpler. We return to

Lerner and colleagues’ work in Section 3.6.

Hoopl implements the generic portions of the dataflow algorithm: iterative

computation, traversing the control-flow graph (cfg), and combining facts. The

client program, a term hoopl uses to mean the program using the library for some

optimization, provides data structures and functions specific to that optimization:

the representation of programs and facts, a transfer function, a rewriter, and a
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1 void example() {
2 int a, c;
3 c = 4;
4 a = c + 1;
5 printf("%d",c);
6 a = c + 2;
7 }

1 void example() {
2 int c;
3 c = 4;
4 printf("%d",c);
5 }

(a) (b)

Figure 3.1: Part (a) defines a function using the C language. Part (b) shows
the program after performing dead-code elimination.

meet operator.

We will illustrate hoopl concepts using a running example motivated by the

C-language function defined in Figure 3.1 (a). A cursory examination of that

listing shows the assignments to a on Lines 4 and 6 do not affect the output (i.e.,

observable behavior) of example. We could eliminate them without changing the

program’s meaning; we may even improve its performance. However, we could

not eliminate the assignment to c on Line 3 because that may change the value

printed on Line 5. We call variables that may affect observable behavior live; a dead

variable is not live. Figure 3.1 (b) shows one way we could optimize this program

by eliminating the “dead” statements in Figure 3.1 (a).

Dead-code elimination refers to the optimization that first determines “liveness”

and then removes dead statements (i.e., those only assigning to dead variables).

Our running example will implement a client program that can apply dead-

code elimination to the program in Figure 3.1 (a), transforming it to resemble

Figure 3.1 (b).

This chapter provides enough background to understand the use of hoopl in
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this work. It assumes the reader has prior knowledge of the Haskell programming

language, including language extensions such as gadts (Schrijvers et al., 2009), as

implemented by GHC 7.2 (The GHC Team, 2011b). This chapter follows the same

outline as our chapter covering dataflow analysis, presenting each concept in terms

of hoopl structures. Section 3.1 gives an overview of the types, data structures, and

functions provided by hoopl. Sections 3.2 through 3.8 give detailed information

about each item. Throughout, we develop our client program to implement

dead-code elimination. We conclude with a summary of hoopl in Section 3.9.

3.1 Hoopl’s API

To implement dataflow analysis generically, hoopl defines several core data struc-

tures that client programs must use. These include the representation of cfgs,

the types of transfer and rewrite functions, and the implementation of the meet

operator. Hoopl controls the cfg representation so it can traverse, propagate facts

around, and rewrite the cfg. Hoopl specifies the type of the transfer and rewrite

function such that they produce usable information (and rewrites). Finally, hoopl

specifies the form of the meet operator (but not its implementation) so that the

library can recognize fixed points.

Hoopl requires that client programs specify those items related to their specific

optimization: the abstract syntax tree (ast) of the language analyzed, the repre-

sentation of facts, and the implementation of the transfer and rewrite functions.

Each node in the cfg typically contains an expression or statement from the ast of

the language that the client program analyzes. While hoopl controls the edges

between nodes in the cfg, it does not specify the contents of those nodes. Similarly,

while hoopl determines when an analysis reaches a fixed point, hoopl relies on
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the client to specify when one set of facts equals another. Finally, hoopl applies

the transfer and rewrite functions to the cfg but requires that the client program

implement them for their specific ast and optimization.

3.2 Control-Flow Graphs

Hoopl defines cfgs in terms of basic blocks, parameterized by content and shape.

Content takes the form of statements or expressions from the client’s ast, while

shape specifies how control-flow enters and leaves a given block. An “open” block

allows control-flow to fall-through implicitly from its predecessor or to fall-through

to its successor. A “closed” block requires that control-flow explicitly transfers to

or from the block. Shape constrains the cfg such that only blocks with compatible

shapes can be connected: predecessors of an open block must be open; successors

of a closed block must be closed.

Hoopl provides types named O (for open) and C (for closed) to describe

the entry and exit shape of a given block. We write O O (“open/open”), O C

(“open/closed”), etc., where the first type describes the block’s entry shape and

the latter its exit shape. An O C block requires a unique predecessor. Control-flow

will fall-through from the predecessor to the O C block, but control-flow must

explicitly transfer to a successor block on exit. An O O block requires a unique

predecessor and a unique successor; this allows control-flow to fall-through from

its predecessor and similarly allows control-flow to implicitly pass to its successor.

A C O block requires that control-flow passes explicitly from its predecessors.

However, control-flow falls-through from the block to its successor. A C C block

must be the target of an explicit control-flow transfer and must, in turn, explicitly

pass control-flow to a successor block. Figure 3.2 illustrates the four possible block
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Shape Example Graph Example Statement

O O
(“open/open”)

e O O O O x Assignments.

O C
(“open/closed”)

C x

...

C x

O Ce O Conditionals, jumps.

C O
(“closed/open”)

e C

...

e C

C O O x Function entry points,
alternatives.

C C
(“closed/closed”)

e C

...

e C

C C

C x

...

C x

Function bodies.

Figure 3.2: This table shows the four possible block shapes. Each row gives
example statements and a representative cfg using a block of
the given shape. Dashed lines indicate optional blocks. Solid
lines show required blocks.

shapes, with representative examples.

Figure 3.3 gives Haskell declarations that can represent the ast for example.

We use GHC’s gadt syntax (The GHC Team, 2011a, Section 7.4.7) to specify the

value of the e and x (“entry” and “exit”) types for each constructor, reflecting the

control-flow of the represented statement. The CExpr and Var types do not affect

control-flow in our subset, so we do not annotate them like CStmt. Hoopl defines

the Label type; we use it to define the successors and predecessors of closed blocks.
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data CStmt e x where
Entry :: Label→ CStmt C O
Assign :: Var→ CExpr→ CStmt O O
Call :: Var→ [CExpr ]→ CStmt O O
Return :: CStmt O C

data CExpr =
Const Int
| Add CExpr CExpr
| Var Var
| String String

type Var = String

Figure 3.3: Haskell data declarations for representing the ast of example.

The Entry value represents a function entry point; we give it type C O because

control-flow can only explicitly enter a function through a call. The Return con-

structor creates a value with the type CStmt O C, meaning control-flow will not

implicitly pass from the statement but rather explicitly transfer to another block

(i.e., the caller of the function). The Assign constructor’s type, CStmt O O, indi-

cates that control-flow will fall-through, reflecting the behavior of the assignment

statement.

The Call statement’s type could be O C to reflect that control-flow implicitly

enters the statement from its predecessor and then transfers explicitly to another

block. However, we can think of this as an "external call" to a block defined outside

the program. In this way Call acts like an assignment — control-flow implicitly

passes through the function call to the next statement. Therefore, we give Call the

type O O.
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E

c = 4
B1

a = c + 1
B2

printf("%d",c)
B3

a = c + 2
B4

X

Entry l
B5

::CStmt C O

Assign "c" (Const 4)
B6

::CStmt O O

Assign "a" (Add (Var "c") (Const 1))
B7

::CStmt O O

Call "printf" [String "%d", Var "c" ]
B8

::CStmt O O

Assign "a" (Add (Var "c") (Const 2))
B9

::CStmt O O

Return
B10

::CStmt C O

(a) (b)

Figure 3.4: Our example function as a control-flow graph. Part 3.1 (a) uses
C syntax for each statement. Part 3.1 (b) uses the ast given in
Figure 3.3.

Figure 3.4 shows a cfg for example. Part (a) shows the program with C

syntax. Part (b) uses the ast just given. Each block in Part (a) corresponds to

the adjacent block in Part (b). For example, Block B1 (“c = 4”) corresponds to

Block B6 (“Assign "c" (Const 4)”). Also notice that the entry and exit points (E

and X, respectively) in Part (a) do not appear explicitly in our program text, but

they must be represented in the cfg.

Each block in Figure 3.4 (b) shows the type associated with its value. For

example, the type of Block B6, CStmt O O, shows that control-flow falls-through

the statement. However, the type of B5, CStmt C O, shows that control-flow must

34



Chapter 3 The Hoopl Library

explicitly transfer to the block (in this case, through a function call). The type

CStmt O C on B10 shows the opposite — control-flow does not implicitly exit the

block; instead, control-flow explicitly returns to the caller of the function.

mkFirst :: n C O→ Graph n C O
mkMiddle :: n O O→ Graph n O O
mkLast :: n O C→ Graph n O C
(<∗>) :: Graph n e O→ Graph n O x→ Graph n e x
(|∗><∗|) :: Graph n e C→ Graph n C x→ Graph n e x

Figure 3.5: Primitives provided by hoopl for constructing Graph values,
representing cfgs.

Hoopl defines the type Graph for representing cfgs. Figure 3.5 shows the five

primitive functions that hoopl provides for client programs to use for constructing

cfgs. The n type in each primitive’s signature represents the ast defined by the

client program (CStmt in our example).

The mkFirst, mkMiddle, and mkLast functions turn a single block into a graph of

one block with the same shape. The (<∗>) operator, pronounced “concat,” connects

an “open on exit” (e O) graph to an “open on entry” (O x) graph. The resulting

graph’s shape, e x, combines the entry shape of the first argument and the exit

shape of the second. Necessarily, the graph represented by the first argument

becomes the predecessor of the graph represented by the second argument. For

example, if n1 has type CStmt C O and n2 has type CStmt O O, then n1 <∗> n2

would have type CStmt C O and n1 will be the unique predecessor to n2 in

n1 <∗> n2. Hoopl combines smaller graphs into larger graphs using the (|∗><∗|)

operator (pronounced “append”). Unlike (<∗>), this operator does not imply any
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control-flow between its arguments.

example :: Label→ Graph CStmt C C
example l = mkFirst (Entry l) <∗>

mkMiddle (Assign "c" (Const 4)) <∗>
mkMiddle (Assign "a" (Add (Var "c") (Const 1))) <∗>
mkMiddle (Call "printf" [String "%d", Var "c" ]) <∗>
mkMiddle (Assign "a" (Add (Var "c") (Const 2))) <∗>
mkLast Return

Figure 3.6: A definition that creates a cfg for example, using the ast from
Figure 3.3 and the functions shown in Figure 3.5.

Returning to our example, we can construct the cfg from Figure 3.4 (b) using

the code in Figure 3.6. The l parameter (with type Label) defines the entry point for

this block. Each statement in the block is mapped to a graph by applying mkFirst,

mkMiddle, or mkLast as appropriate. We concatenate the graphs using the (<∗>)

operator, forming one large graph with type CStmt C C. This construction exactly

represents the cfg in Figure 3.4 (b).

The (<∗>) operator defines control-flow within a basic block, and the (|∗><∗|)

operator combines unconnected blocks into a larger graph. Hoopl defines the

NonLocal class to bridge the gap between these two operators:1

class NonLocal n where
entryLabel :: n C x→ Label
successors :: n e C→ [Label ]

Hoopl defines the Label type, which the client program uses for two purposes:

1The (|∗><∗|) and (<∗>) operators in Figure 3.5 specify a NonLocal constraint on n, which we

have hidden to simplify the presentation.
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uniquely identifying each block and specifying the explicit successors of a given

block. Hoopl use entryLabel method to find the entry point for a given block.

The n C x type of its argument ensures that entryLabel can only be applied to

“closed on entry” nodes: precisely those nodes that can be the target of an explicit

control-flow transfer. Similarly, hoopl uses successors to determine the explicit

successors of a “closed on exit” block.

The client program must define an instance of NonLocal for its ast. Hoopl will

use that instance to recover potential control-flow between basic blocks in the cfg.

Therefore, as seen in Figure 3.3, the ast must store the label of a “closed on entry”

node and the labels of successors for a “closed on exit” node in the ast itself.

We define the following instance of NonLocal for CStmt:

instance NonLocal CStmt where
entryLabel (Entry l) = l
successors Return = [ ]

We define entryLabel for Entry, the only “closed on entry” constructor for CStmt.

Similarly, we just define successors for Return, the only “closed on exit” CStmt

value. However, we do not specify the destination of a Return so successors always

returns an empty list.

3.3 Facts, Meet Operators and Lattices

The dataflow algorithm, as given for the forwards case in Figure 2.10 on Page 23,

iteratively computes output facts for each block in the cfg until reaching a fixed

point. Input facts correspond to the in(B) set for each block; output facts corre-

spond to the out(B) set for the block.2 The first iteration uses some initial value

2A backwards analysis reverses this correspondence.
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for each in(B) and out(B) set. Each subsequent iteration uses a meet operator to

combine out(B) sets from the predecessors of each block into an in(B) set for that

block. Together, the set of possible facts and the meet operator must form a lattice.

Hoopl provides the DataflowLattice type (shown in Figure 3.7), which defines

the following fields: fact_name, used for documentation; fact_bot, for specifying

initial facts; and fact_join, for the implementation of the analysis’ meet operator.3

data DataflowLattice a = DataflowLattice {
fact_name :: String,
fact_bot :: a,
fact_join :: Label→ OldFact a→ NewFact a→ (ChangeFlag, a)}

newtype OldFact a = OldFact a
newtype NewFact a = NewFact a
data ChangeFlag = NoChange | SomeChange

Figure 3.7: DataflowLattice and associated types defined by hoopl for repre-
senting and combining facts.

The meet operator, fact_join, takes three arguments and returns a pair consisting

of a value and a ChangeFlag. The arguments represent possibly differing output

facts; the result represents the meet of those facts. Hoopl determines that a

fixed point has been reached when fact_join returns NoChange for all blocks in the

cfg.4 The client program must ensure that the meet defines a finite-height lattice;

3The hoopl authors choose to document their library in terms of joins. We follow (Aho et al.,

2006) and use the meet.
4Hoopl uses this strategy for efficiency: if the client does not specify when facts change, hoopl

would need to do many comparisons on each iteration to determine if a fixed point had been

reached.

38



Chapter 3 The Hoopl Library

otherwise, the analysis may not terminate.

As stated previously, dead-code elimination uses liveness analysis to find dead

code. A variable is live at a given point if it will be used at a later execution point;

otherwise the variable is dead. Liveness analysis is implemented as a backwards

dataflow analysis. In a backwards analysis, out(B) is the set of input facts to block

B; in(B) is the set of output facts. All live variables from B’s successors may be live

in B; therefore, we implement our meet operator as set union: to compute out(B)

for block B, we take the union of all the in sets of B’s successors.

We define the set Vars as the set of all declared variables in the program.

For each block B, our analysis computes the set of variables that are live at the

beginning of each block, in(B), using the transfer function defined in Section 3.4)

and out(B), the block’s input set. Both in(B) and out(B) are subsets of Vars. We

set in(B) and out(B) to the empty set when analysis begins.

Figure 3.8 shows Haskell code that implements the definitions of the meet

operator and facts just given. The type Vars corresponds to Vars. The definition of

meet corresponds to set union. If old does not equal new we return SomeChange and

the union of the two sets (the changeIf function maps Bool values to ChangeFlag

values). The lattice definition puts all the pieces together into a DataflowLattice

value. Notice we set fact_bot to Set.empty, the initial value for all in(B) and out(B)

sets.

3.4 Direction & Transfer Functions

The dataflow algorithm specifies two sets of facts for every block in the cfg: in(B)

and out(B). in(B) represents facts known when control-flow enters the block;

out(B) those facts known when control-flow leaves the block. The transfer function
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type Vars = Set Var
meet :: Label→ OldFact Vars→ NewFact Vars→ (ChangeFlag, Vars)
meet (OldFact old) (NewFact new) = (changeIf (old /= new), old ‘union‘ new)

lattice :: DataflowLattice Vars
lattice = DataflowLattice {

fact_name = "Liveness"
, fact_bot = Set.empty
, fact_join = meet}

Figure 3.8: Haskell definitions implementing fact and meet definitions for
our liveness analysis.

computes output facts for each block in the cfg, using the contents of the block

and its input facts. A forwards analysis uses in(B) as the input facts and computes

out(B); A backwards analysis does the opposite, computing in(B) from out(B) and

the contents of the block.

Hoopl defines the FwdTransfer and BwdTransfer types, shown in Figure 3.9, to

represent forwards and backwards transfer functions. The n parameter represents

the block’s contents (i.e., the ast of the program under analysis). The f param-

eter represents the facts computed. Hoopl does not export the constructors for

FwdTransfer or BwdTransfer; instead, clients use the mkFTransfer and mkBTransfer

functions, whose signatures are also shown in Figure 3.9.

Hoopl requires that we parameterize our ast (i.e., the n type) using the O

and C types from Section 3.2. A standard Haskell function cannot be applied

to values with different types (e.g., Assign has type CStmt O O, but Entry has

type CStmt C O). Therefore, to pattern-match on all constructors, mkFTransfer and
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newtype FwdTransfer n f
newtype BwdTransfer n f

mkFTransfer :: (forall e x . n e x→ f → Fact x f )→ FwdTransfer n f
mkBTransfer :: (forall e x . n e x→ Fact x f → f )→ BwdTransfer n f

Figure 3.9: Hoopl’s FwdTransfer and BwdTransfer types. They can be con-
structed with the functions mkFTransfer and mkBTransfer.

mkBTransfer require that the transfer function given be defined with a higher-rank

type (The GHC Team, 2011a, Section 7.8.5). This allows client programs to write

one transfer function that can match on all constructors in the ast.

Notice that mkFTransfer takes a transfer function that produces a Fact x f

value. Hoopl defines Fact x f as an indexed type family (The GHC Team, 2011a,

Section 7.2.2), where the meaning of Fact x f depends on the type of x. When x

is C, then Fact x f is a synonym for FactBase f (another hoopl type), which is a

dictionary of facts indexed by Labels. When x is O, Fact x f is just a synonym for f

(i.e., a plain fact). The definition of Fact x f extends the dataflow algorithm slightly

by allowing the transfer function to produce different facts for each successor node.

In the case of a backwards analysis, mkBTransfer specifies that the transfer

function receive an argument of type Fact x f , and that it always produce a plain

fact. When a node is closed on exit, the transfer function receives a dictionary

of all facts (indexed by label) from the successors of the node. This definition

also extends the dataflow algorithm slightly because it does not force the transfer

function to take the meet of its input facts.

41



Chapter 3 The Hoopl Library

Figure 3.10 shows the implementation of the transfer function for our example.

The subsidiary definition, transfer, computes facts for each constructor in CStmt:

transfer (Entry ) f This statement indicates the entry point of the function. Our

ast does not represent parameters or globals; therefore, any variables live at

this point were used but never assigned. Another analysis could use this fact

to warn the programmer that an uninitialized variable was used. For our

purposes, transfer just returns f , the set of facts so far.

transfer (Assign var expr) f In this case, f represents the set of live variables found

so far. We first remove var from f , as assignment eliminates live variables.

The auxiliary function uses computes the live variables in expr; we add those

variables to our updated f and return the result.

transfer (Call exprs) f This case resembles Assign, except that we do not remove

any variables from f . We add all variables used in any of the exprs given to

the live set.

transfer Return f No variables (in our ast) will be live after the procedure returns.

Therefore, nothing is live at this point, and we return the empty set.

3.5 Iteration & Fixed Points

The dataflow algorithm iterates over a program’s cfg until the facts for each

block reach a fixed point. Hoopl uses the meet operator (the fact_join field of the

DataflowLattice type) given by the client to determine when the analysis should

terminate.
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liveness :: BwdTransfer CStmt Vars
liveness = mkBTransfer transfer

where
transfer :: forall e x . CStmt e x→ Fact x Vars→ Vars
transfer (Entry ) f = f
transfer (Assign var expr) facts = (var ‘delete‘ facts) ‘union‘ (uses expr)
transfer (Call exprs) facts = facts ‘union‘ unions (map uses exprs)
transfer Return = Set.empty
uses :: CExpr→ Set Var
uses (Add e1 e2) = uses e1 ‘union‘ uses e2
uses (Var v) = singleton v
uses = Set.empty

Figure 3.10: The transfer function implementing liveness analysis.

Hoopl associates each block in the cfg with a Label. On each iteration, and at

each label, hoopl computes the meet of facts from the prior iteration with facts

from the current iteration. Recall that fact_join returns a ChangeFlag, as well as

new facts. Therefore, if any application of fact_join results in SomeChange, hoopl

continues to iterate. Otherwise, the analysis terminates.

3.6 Interleaved Analysis & Rewriting

Kildall’s formulation of the dataflow algorithm (Kildall, 1973) does not give a gen-

eral method for transforming cfgs based on the results of the analysis performed.

He assumed that the cfg would be transformed after each analysis; he did not

address the issue of determining when an analysis should be performed again

(possibly leading to further rewrites). Kildall also did not address the question of

composing multiple analyses; instead, each analysis is assumed to be applied one
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at a time, in no particular order.

Lerner, Grove and Chambers (2002) developed a variation of the dataflow

algorithm that addresses these concerns. Kildall’s dataflow algorithm computes

facts over a static cfg; Lerner and colleagues’ algorithm repeatedly transforms the

cfg during analysis. After transforming some or all of the cfg, their algorithm

re-computes facts for the new cfg; the transformation and analysis of the cfg

continues until reaching a fixed point.

This algorithm does not produce better results than Kildall’s, in the sense

defined by Section 2.5 (Page 24). However, as Lerner and colleagues describe, their

algorithm removes the need to combine individual dataflow analyses manually.

Instead, each dataflow analysis can be implemented separately; their algorithm

composes those separate pieces automatically. Hoopl implements a version of the

interleaved analysis and rewriting algorithm just described.

3.7 Rewriting with Hoopl

Figure 3.11 shows the two types hoopl provides for rewriting, FwdRewrite and

BwdRewrite. These types correspond to the FwdTransfer and BwdTransfer types;

hoopl requires that a FwdTransfer be paired with a FwdRewrite, and a BwdTransfer

with a BwdRewrite. Client programs use the mkFRewrite and mkBRewrite functions

to create FwdRewrite and BwdRewrite values. For the same reason as the transfer

function, rewrite functions must be defined with a higher-rank type.

The argument to mkFRewrite (and mkBRewrite) gives the signature for rewrite

functions. A rewrite function receives the node to rewrite as its first argument.

The facts computed for that node are given in the second argument. Like the

backwards transfer function, a backwards rewriter receives a dictionary of facts,
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indexed by labels, if the node is closed on exit; otherwise, the rewriter receives a

plain fact. A forwards rewriter always receives a plain fact.

The rewrite function returns a monadic Maybe (Graph n e x) value. The

monadic portion relates to optimization fuel, a concept described in Section 3.7.1.

The Maybe portion indicates if the rewriter wants to change the node given in any

way. Nothing means no change to the node. A Just value causes hoopl to replace

the current block with a Graph n e x value. Returning a Graph value allows the

rewriter to replace a single node with many nodes, but the graph returned must

have the same e x type (i.e., shape) as the input node.

Rewriters can delete O O nodes by returning Just emptyGraph. The shape type

prevents C O and O C nodes from being deleted. To see why, consider the shape

of each node and its successor (or predecessor, in the second case). A C O node

necessarily precedes an O x node. If the C O node were deleted, the O x node

cannot replace it. A C O node can have zero or more predecessors; a O x node can

only have one. The predecessors to the C O node cannot become the predecessors

to the O x node; therefore, deleting a C O node is not possible. A similar argument

holds for O C nodes.

Figure 3.12 shows eliminate, the rewrite function for our example optimiza-

tion. We define the local function rewrite by cases for each constructor in CStmt.

All cases except Assign return Nothing, leaving the cfg unchanged. If the test

not (var ‘member‘ live) in the Assign case succeeds, rewrite removes the assignment

by returning Just emptyGraph. Otherwise, the assignment remains.
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newtype FwdRewrite m n f
newtype BwdRewrite m n f

mkFRewrite :: FuelMonad m⇒
(forall e x . n e x→ f → m (Maybe (Graph n e x)))
→ FwdRewrite m n f

mkBRewrite :: FuelMonad m⇒
(forall e x . n e x→ Fact x f → m (Maybe (Graph n e x)))
→ BwdRewrite m n f

Figure 3.11: The FwdRewrite and BwdRewrite types provided by hoopl, as
well as the functions used to construct them, mkBRewrite and
mkFRewrite.

3.7.1 Optimization Fuel

Hoopl implements “optimization fuel,” originally described by Whalley (1994),

as an aid in debugging optimizations. Each rewrite costs one “unit” of fuel.

If fuel runs out, hoopl stops iterating. This allows the programmer to debug

faulty optimizations by decreasing the fuel supply in a classic divide-and-conquer

approach. The FuelMonad constraint ensures hoopl can manage fuel during

rewriting. Normally, the client program does not worry about fuel.

3.8 Executing an Optimization

Figure 3.13 shows hoopl’s BwdPass and FwdPass types. The figure also shows

the signatures for analyzeAndRewriteBwd and analyzeAndRewriteFwd, the hoopl

functions that the client program uses to apply a given analysis and transformation.

As the names suggest, one pair applies to backwards dataflow-analyses and the
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eliminate :: FuelMonad m⇒ BwdRewrite m CStmt Vars
eliminate = mkBRewrite rewrite

where
rewrite :: FuelMonad m⇒ forall e x . CStmt e x
→ Fact x Vars→ m (Maybe (Graph CStmt e x))

rewrite (Entry ) = return Nothing
rewrite (Assign var exprs) live = return $

if not (var ‘member‘ live)
then Just emptyGraph
else Nothing

rewrite (Call ) = return Nothing
rewrite Return = return Nothing

Figure 3.12: The rewrite function for our dead-code elimination optimiza-
tion. Assign statements are deleted when they assign to a dead
variable. In all other cases the cfg remains unchanged.

other to forwards analyses. We will only discuss the backwards case here.

The BwdPass type packages a lattice definition, transfer function, and rewrite

function into one structure. The analyzeAndRewriteBwd function takes a number

of arguments and must be run inside a hoopl-specified monad. We address each

argument in turn.

(CheckpointMonad m, NonLocal n, LabelsPtr entries) — Line 15 These constraints re-

flect several hoopl requirements:

• CheckpointMonad – This class provides methods that allow hoopl to

rollback monadic changes to the cfg, providing support for hoopl’s

implementation of Lerner and colleague’s technique.

• NonLocal – This class allows hoopl to traverse the cfg.
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1 data FwdPass m n f = FwdPass {
2 fp_lattice :: DataflowLattice f
3 , fp_transfer :: FwdTransfer n f
4 , fp_rewrite :: FwdRewrite m n}

5 data BwdPass m n f = BwdPass {
6 bp_lattice :: DataflowLattice f
7 , bp_transfer :: BwdTransfer n f
8 , bp_rewrite :: BwdRewrite m n f }

9 analyzeAndRewriteFwd :: (CheckpointMonad m, NonLocal n, LabelsPtr entries)⇒
10 FwdPass m n f
11 → MaybeC e entries
12 → Graph n e x
13 → Fact e f
14 → m (Graph n e x, FactBase f , MaybeO x f )

15 analyzeAndRewriteBwd :: (CheckpointMonad m, NonLocal n, LabelsPtr entries)⇒
16 BwdPass m n f
17 → MaybeC e entries
18 → Graph n e x
19 → Fact x f
20 → m (Graph n e x, FactBase f , MaybeO e f )

Figure 3.13: Hoopl’s types and functions used to execute backwards
and forwards analysis and transformation. BwdPass and
FwdPass package the client program’s definition of lattice,
transfer function, and rewrite function. Except for direction,
analyzeAndRewriteFwd and analyzeAndRewriteBwd behave simi-
larly; they execute the optimization defined by the client pro-
gram.
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• LabelsPtr – This class gives hoopl the means to find external entry points

to the cfg.

BwdPass m n f — Line 16 This argument packages the client’s definitions of the

lattice, transfer function, and rewrite function for this particular analysis.

MaybeC e entries — Line 17 This gives all the entry points to the program, which

may not always be all the Labels in the cfg.

Graph n e x — Line 18 This argument holds the cfg to be optimized. In practice,

e x is always C C.

Fact x f — Line 19 This argument gives the initial input facts for all nodes in the

graph.

Figure 3.14 shows deadCode, which puts all the pieces of our example optimiza-

tion together and applies them to a given program. The type, Graph CStmt C C→

Graph CStmt C C, shows that deadCode modifies a cfg composed of CStmt values.

The opt definition implements our analysis and transformation. Our anal-

ysis must run in a monadic context that is an instance of CheckpointMonad

and UniqueMonad (a class that controls the creation of new Label values —

allowing rewriters to create new C x nodes). The CheckingFuelMonad and

SimpleUniqueMonad types in the signature of opt are the hoopl-provided

implementations of CheckpointMonad and UniqueMonad.

The first argument to analyzedAndRewriteBwd, pass, packages up the lattice

definition, transfer function, and rewrite function previously discussed. The

second argument, (JustC entryPoints), gives all entry points for the program. The
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third argument is the program we are optimizing. Finally, the input facts (an

empty set) are given in the fourth argument.

analyzeAndRewriteBwd returns a transformed program, the final facts computed,

and any facts that should propagate “out” of the cfg. We capture the transformed

program in program′ and return it.

In deadCode, we use (runWithFuel infiniteFuel) and runSimpleUniqueMonad (all

provided by hoopl) to execute the monadic program returned by opt and ultimately,

we return the transformed program.

deadCode :: Graph CStmt C C→ Graph CStmt C C
deadCode program = runSimpleUniqueMonad $ runWithFuel infiniteFuel $ opt

where
opt :: CheckingFuelMonad SimpleUniqueMonad (Graph CStmt C C)
opt = do
(program′, , )← analyzeAndRewriteBwd pass (JustC entryPoints) program

facts
return program′

pass = BwdPass {bp_lattice = lattice, bp_transfer = liveness
, bp_rewrite = eliminate}

entryPoints = case program of
(GMany blocks )→ map (entry . blockToNodeList′) (mapElems blocks)

entry :: (MaybeC e (CStmt C O), [CStmt O O ], MaybeC x (CStmt O C))
→ Label

entry (JustC (Entry l), , ) = l
facts :: FactBase Vars
facts = mkFactBase lattice (zip entryPoints (repeat Set.empty))

Figure 3.14: deadCode applies the optimization developed so far to a partic-
ular program.
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3.9 Summary

This chapter gave an introduction to the essential features of the hoopl library.

Hoopl implements the generic portions of the dataflow algorithm; in particular, it

determines when facts reach a fixed point. Hoopl’s implementation of the dataflow

algorithm interleaves analysis and rewriting, a technique originally described by

Lerner and colleagues (Lerner, Grove, and Chambers, 2002). Hoopl requires that

the client program define the facts to analyze, a transfer function, a rewriting

function, and a meet operator (which, in turn, defines a lattice for the facts given).

The complete source code for the dead-code elimination optimization shown in

this chapter can be downloaded from the url given in the Appendix.
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A Monadic Intermediate Language

Most compilers do not generate executable machine code directly from a program

source file. Rather, the compiler transforms the program into a number of different

intermediate representations, where each representation exposes different details

about the implementation of the program. Although not intended to be used

directly, many of these intermediate representations are languages in their own

right.

A broad range of intermediate languages have been described for both impera-

tive and functional languages. Three-address code (described in standard textbooks

such as Aho et al., 2006), a language normally used to represent imperative lan-

guages, emphasizes simplicity by requiring that all operations specify, at most, two

operands and one destination. Three-address code aids in optimizing the use of

registers, a scarce resource on most processors. Administrative-Normal Form (anf),

first described by Flanagan et al. (1993) and intended for functional languages,

requires that all intermediate values be named. Anf’s inventors proposed it as a

replacement for continuation-passing style (cps), a widely-employed intermediate

representation most completely described by Appel (1992). The simple structure

of both cps and anf programs eases their translation to executable assembly-like

languages.

Monadic programming, popularized by Wadler (1990), but first described by
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Moggi (1991), separates expressions into those that have side-effects and those

that do not. A side-effecting expression is considered a computation, or program,

that must execute to produce a value. Running the program multiple times may

produce different results.

In this chapter, we describe a monadic intermediate language, mil, that exploits

monadic programming to segregate side-effecting operations (such as allocations)

from pure operations, such as case discrimination or jumps. More specifically,

mil supports functional language features, but also follows the form of three-

address code. Mil directly supports function application and abstraction. All

intermediate values are named. Mil specifies evaluation order and separates

stateful computation using a monadic programming style. Mil’s syntax enforces

basic-block structure on programs, making them ideal for dataflow analysis.

In order to write programs that we can translate to mil, we use a simple

variant of the λ-calculus, called λC, that supports a monadic programming style,

case discrimination, local definitions, and other features of a high-level, purely

functional language. We describe λC in Section 4.1. The motivation and roots

of mil are given in Section 4.2. Mil’s complete syntax follows in Section 4.3.

Section 4.4 discusses mil’s treatment of allocation as a side-effect. Section 4.5

shows how mil treats monadic programs as suspended computations. Section 4.6

highlights some of the subtler points in our translation strategy from λC to mil. We

sketch how mil programs can be evaluated in Section 4.7. Section 4.8 shows how

hoopl influenced the ast that we use to represent mil programs. In Section 4.10

we discuss the mlj and sml.net compilers, both of which also used a monadic

intermediate language. We conclude in Section 4.11.
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4.1 Source Language: λC

Our source language, λC (pronounced “lambda-case”), derives from the λ-calculus,

with elements borrowed from the Haskell language’s use of do notation to rep-

resent monadic programs. The hasp group developed λC as an intermediate

representation for the Habit programming language (2010). The Habit “Compila-

tion Strategy” report (2010) gives full details on λC.1 The report describes several

different intermediate languages; λC corresponds to “Normalized mpeg.”

Figure 4.1 gives the full syntax of λC. In the figure, x, x1, etc. represent simple

variables, while t, t1, etc. represent arbitrary terms. All def terms are global to the

program in which they are defined. Definitions with zero parameters are values

and cannot be recursive; definitions with more than one parameter are functions

and can be recursive. Only variables can appear as arguments in definitions and

case alternatives — the language does not support more sophisticated pattern-

matching. While most elements should be recognizable from Haskell or the

λ-calculus, we will explain the the monadic bind and primitive terms further.

Monadic Bind The monadic binding term, do {x ← t1; t2}, states that the

result of running the monadic computation, t1, will be bound to x and that t2

will then be executed with x in scope. Note that x can only be a variable; λC

does not support pattern-matching on the left-hand side of a bind. When t2 is

another monadic bind, we do not nest the do keyword: for brevity, we write

do {x← t1; y← t2; t_3} rather than do {x← t1; do {y← t2; t_3}}.

Primitives The primitive expression p∗ refers to a primitive definition named

1For simplicity’s sake, we ignore two features of λC in this work: patterns and guards. Details

on those elements can be found in the aforementioned report.
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def := f x1 . . . xn = term, n > 0 Definition

term:= x, x1, x2, . . . Variables
| λx. t1 Abstraction
| t1 t2 Application
| case t of

alt1
. . .
altn

Case Discrimination

| do {x← t1; t2} Monadic Bind
| let def1

. . .
defn

in t

Let

| p∗ Primitive
| C x1 . . . xn, n > 0 Allocate Data

alt:= C x1 . . . xn → t, n > 0 Alternative

Figure 4.1: The syntax of λC. Variables are represented using x, x1, etc.
Terms are represented by t, t1, etc. C represents the name of a
given constructor.

p. Primitives refer to functionality that is not implemented in λC itself. In all other

respects the primitive p∗ is treated like any other function value.

4.2 MIL’s Purpose

The design of an intermediate language typically exposes some specific imple-

mentation details while hiding others in order to support certain analysis and

transformation goals. Exposing intermediate values gives us the chance to analyze

and eliminate them. Hiding implementation details makes the job of writing those

analyses and transformations simpler.

Mil’s syntax and design borrow heavily from three-address code, as stated
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previously. Three-address code represents programs such that all operations

specify, at most, two operands and a single destination. Three-address code

hides details of memory management by assuming that arbitrarily many storage

locations can be named and updated. For example, the expression:

(b ∗ c + d)
2

,

could be expressed in three-address code as:

t1 <- mul b c

t2 <- add t1 d

t3 <- div t2 2

where t1, t2 and t3 represent temporary storage locations and mul, add, and div

represent the corresponding arithmetic operations.

Mil seeks to expose certain effects that are not normally represented in func-

tional languages. As described by Wadler (1990), monads can be used distinguish

pure and impure functions. A pure function has no side-effects: it will not in any

way change the observable state of the machine. An impure function may change

the machine’s state in an observable way. Most functional languages treat data and

closure allocation as pure operations. Mil uses monads to treat those allocations

as impure operations.

Three-address code emphasizes assignments and low-level operations, features

important to imperative languages. Mil emphasizes allocation, higher-order func-

tions and side-effecting computations, features important to functional languages.

Though the operations supported by mil differ from traditional three-address code,

the intention remains the same: hide some details while exposing those that we
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care about.

4.3 MIL Syntax

Figure 4.2 gives the syntax for mil. Where the term v1, etc. appears, only simple

variables are allowed. This includes most terms in the language, staying true to

the design of three-address code. Bold terms such as b and k represent labeled

locations in the mil program. C represents the name of a data constructor. Bold

text such as case and invoke represent mil keywords. A mil program consists of

a number of labeled blocks.

Closure-capturing blocks specify an environment, {v1, . . . , vn}, and an argument,

v. Closure-capturing blocks only execute when initiated by an enter expression of

the form f @ x. In f @ x, f refers to a closure that will point to a closure-capturing

block named k. The environment declared for k corresponds to the environment

captured by the closure. The argument x becomes the argument v declared in the

closure-capturing block. We chose to allow only a single tail expression in the

body of a closure-capturing block in order to simplify analysis of their behavior.

Basic blocks consist of a sequence of monadic binding statements that execute in

order without any intra-block jumps or conditional branches. The parameters to

the block, (v1, . . . , vn), are the only variables in scope at the start of the block. The

name of the block (b) is global to the program. Each basic block ends with either a

case statement or a tail.

Each monadic binding statement assigns the result of the tail on the right-hand

side of the statement to the variable on the left. If a variable is bound more than

once, later bindings will shadow previous bindings.

The case discrimination statement examines a discriminant and selects one
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variable:= v1, . . . , vn Variables

block:= k {v1, . . . , vn} v: tail Closure-Capturing Block
| b (v1, . . . , vn): bind1

. . .
bindn
done

Basic Block

bind:= v <- tail Monadic Bind

done:= case v of
alt1
. . .
altn

Case Discrimination

| tail

alt:= C v1 . . . vn -> b (v1, . . . , vn) Case Alternative

tail:= return v Return
| v1 @ v2 Enter
| b (v1, . . . , vn) Goto Block
| p∗(v1, . . . , vn) Goto Primitive
| k {v1, . . . , vn} Allocate Closure
| b [v1, . . . , vn] Allocate Monadic Thunk
| invoke v Execute Thunk
| C v1 . . . vn Allocate Data

Figure 4.2: Complete syntax for MIL.

alternative based on the value found. The discriminant is always a simple variable,

not an expression. Each case alternative specifies a constructor and variables for

each value held by the constructor. No “default” alternative exists — all possible

constructors must be specified. Again, to simplify later analysis, we chose that

alternatives must always jump immediately to a block — they do not allow any

other expression.
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Tail terms represent potentially effectful computations and always appear on

the right-hand side of a bind statement, at the end of a basic block, or as the

body of a closure-capturing block. return takes a variable (not an expression) and

produces a computation that returns that value with no side-effects. The “enter”

operator, @, implements function application, “entering” the closure represented

by its left-hand side with the argument on its right-hand side. The “goto block”

and “goto primitive” expressions implement labeled jumps with arguments. In the

first case, b represents a labeled block elsewhere in the program. The primitive

term, p∗, also represents a labeled location, except that the body of the primitive is

not implemented in mil. Otherwise, goto block and goto primitive are treated the

same.

Closure allocation, written as k {v1, . . . , vn}, creates a closure pointing to the

closure-capturing block k, capturing the variables v1, . . . , vn. No other type of

block can be referenced in a closure — k always refers to a closure-capturing block.

The term b [v1, . . . , vn] allocates a monadic thunk. The thunk stores a reference to

block b and captures the variables v1, . . . , vn. Unlike closures, thunks do not store

references to closure-capturing blocks. Instead, b always refers to a basic block

or primitive. The invoke operator executes the monadic thunk referred to by its

argument. We describe thunks in Section 4.5.

The constructor expression C v1 . . . vn creates a data value with the given tag,

C, and the values v1, . . . , vn in the corresponding fields.

MIL Example: compose

Consider the definition of compose given in Figure 4.3 (a) and the corresponding mil

program in Part (b). The three closure-capturing blocks, k1, k2 and k3 correspond
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to the three λ values (λ f . . . . ), (λg. . . . ), and (λx. . . . ). Each block, except k3,

captures a single argument and returns a new closure holding previously captured

values plus the new argument. k3 executes when all arguments are captured and

immediately jumps to compose, the block implementing the body of compose.

The basic block defined on Line 4 gives the name of the block (compose) and

its parameters (f, g, and x). Line 5 applies g to x and assigns the result to t1. The

“enter” operator (@), implements function application. 2

The “bind” operator (<-) assigns the result of the operation on its right-hand

side to the location on the left. All expressions that could have a side-effect appear

on the right-hand side of a bind operator in mil; in this case, g @ x may allocate

memory when evaluated.

Line 6 applies f to t1 and assigns the result to t2. The last line returns t2.

Thus, the compose block returns the value of f (g x), just as in our original λC

expression.

4.4 Allocation as a Side-Effect

Functional languages normally treat data allocation as a hidden operation in that

the program cannot directly observe any effect from an allocation. Of course,

in practice, allocation can cause effects, such as updating the heap or triggering

a garbage collection. For example, using the definition of compose given in Fig-

ure 4.3 (a), consider the sequence of applications that occur when calculating

compose a b c using call-by-value evaluation:

2So called because in the expression g @ x, we “enter” function g with the argument x.

60



Chapter 4 A Monadic Intermediate Language

compose = λ f . λg. λx. f (g x) 1 k1 {} f: k2 {f}
2 k2 {f} g: k3 {f, g}
3 k3 {f, g} x: compose (f, g, x)

4 compose (f, g, x):
5 t1 <- g @ x

6 t2 <- f @ t1

7 return t2

(a) (b)

Figure 4.3: Part (a) gives a λC definition of the composition function; (b)
shows a fragment of the mil program for compose.

compose a b c = (λ f . λg. λx. f (g x)) a b c
= (λg. λx. a (g x)) b c
= (λx. a (b x)) c
= a (b c)

This notation hides an important detail: each function application potentially

allocates a closure representing the function and its environment. For example,

(λg. . . . ) b might allocate a closure referring to the function (λg. λx. f (g x)) and

mapping the free variable f to the value of a.

Figure 4.4 shows compose rewritten in a monadic style that makes closure

allocations explicit, and a program that uses the rewritten compose to evaluate

compose a b c. The closure operation in Part 4.4 (a) is a monadic function that

allocates memory and stores its arguments for retrieval later.3 The first argument

is the function that the closure points to. The second argument represents the

environment that will be used when that function is evaluated.
3λC does not support pattern-matching on function arguments, but we use them in Part 4.4 (a)

for clarity here.
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k0 = do
t← closure k1 [ ]
return t

k1 [ ] f = do
t← closure k2 [ f ]
return t

k2 [ f ] g = do
t← closure compose [ f , g ]
return t

compose [ f , g ] x = do
t← f (g x)
return t

main a b c = do
t0← k0
t1← app t0 a
t2← app t1 b
t3← app t2 c
return t3

(a) (b)

Figure 4.4: Part 4.4 (a) shows a rewritten version of compose that makes
closure allocation explicit; Part 4.4 (b) gives a program that
evaluates compose a b c. Note that these programs produce
monadic values rather than pure values.

Each λ in Figure 4.3 (a) becomes a kn definition in Figure 4.4 (a). k0 corresponds

to the expression λ f . λg. λx. f (g x), allocating a closure with an empty environ-

ment and pointing to k1. k1 corresponds to λg. λx. f (g x), while k2 corresponds

to λx. f (g x). Each kn definition (except k0) takes two arguments. The first is a list

of values representing the environment of the function and the second a new value

representing the argument of the original λ expression. k1 and k2 each allocate and

return a new closure. The closure stores a reference to the next kn+1 definition and

a list of values representing the current environment. compose evaluates f (g x);

however, this expression also becomes monadic, because f (g x) may cause an

allocation.
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Figure 4.4 (b) shows a program that evaluates compose a b c using our monadic

version of compose. To evaluate each closure, we define a monadic function app

that takes a closure and an argument. app evaluates the function referred to by the

closure, using the environment stored in the closure and passing the additional

argument supplied. The first line of the program in Figure 4.4 (b) allocates an

initial closure that serves as the entry point for compose. Each line after gathers an

additional argument and “adds” it to the closure represented. The final line returns

the result of compose a b c. In our original expression, the potential side-effect

caused by each application was not clear. In main, each line makes it very clear

that a side-effect may occur.

Of course, in λC we do not really define the closure or app functions and closure

allocation is not directly visible. Mil, however, treats allocation as an impure

operation and makes it explicit. Figure 4.5 shows a complete mil program for

main = compose a b c. main corresponds to the definition of main in Figure 4.4 (b).

k0 corresponds to the k0 definition in Figure 4.4 (a) and acts as the entry point for

compose. Notice that k0 is not a closure-capturing block; k0 just allocates the initial

closure that will be used to evaluate compose a b c. The closure-capturing blocks k1

and k2 correspond to k1 and k2. The second argument to each closure operation

corresponds to the variables captured by the closures allocated in the body of k1

and k2; the list of values passed as an argument to k1 and k2 correspond to the

environment defined for the k1 and k2 closure-capturing blocks. In Figure 4.4, k2

creates a closure pointing to compose. Because closure-capturing blocks can only

contain a single tail term, k3 jumps immediately to compose, which implements

the body of compose.
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1 main (a, b, c):
2 t0 <- k0 ();
3 t1 <- t0 @ a

4 t2 <- t1 @ b

5 t3 <- t2 @ c

6 return t3

7 k0 (): k1 {}
8 k1 {} f: k2 {f}
9 k2 {f} g: k3 {f, g}

10 k3 {f, g} x: compose (f, g, x)

11 compose (f, g, x): ... as in Figure 4.3 (b) ...

Figure 4.5: The mil program which computes main a b c = compose a b c.

By examining main in Figure 4.5, we can see how mil makes explicit the

intermediate closures created while evaluating compose a b c. Line 2 executes the

block k0, allocating a closure pointing to k1 and assigning it to t0. On line 3, we

apply t0 to a; k1 executes and creates a closure that points to k2 and holds the

value of a. We assign k2 {a} to t1. On Line 4 we apply t1 to the second argument,

b. This executes k2, which expects to find one argument in its environment, just as

we stored in t1. k2 creates another closure, k3 {a, b}, which we assign to t2. This

closure points to k3 and holds two variables in its environment. Finally, on line

5, we apply t2 to the final argument, c. k3 executes and immediately jumps to

compose with our arguments. The result, assigned to t3, is returned on the last

line of main.
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4.5 Monadic Thunks

As described in Wadler’s 1990 paper, a monadic value represents a computation.

Where a pure value evaluates without side-effects, a monadic value represents a

suspended computation that may cause side-effects when evaluated. Evaluating

the computation multiple times may even produce different side-effects each time.

Consider the λC functions in Figure 4.6.4 Neither takes any arguments and they

ostensibly produce the same number. Of course, the value produced by the pure

function in Part (a) differs markedly from that produced by the impure function in

Part (b).

num = 1
printNum = do

print 1
return 1

(a) (b)

Figure 4.6: Part 4.6 (a) shows a pure value. Part 4.6 (b) shows an impure
value.

Intuitively, num returns 1, but printNum returns a computation. We call this

computation a monadic thunk. Traditionally, thunks represent suspended computa-

tion. We use it in the same sense here in that printNum evaluates to a program

that we can invoke; moreover, evaluating printNum alone (as in the expression

let x = printNum) will not invoke the computation — printNum must be evaluated

and then invoked before the computation will produce a result.

4Some syntactic liberties have been taken here.
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To illustrate, consider the λC functions in Figure 4.7 (a).5 The echo function

prints its argument to the screen. The do keyword shows that echo is a monadic

function. The main function uses a let statement to assign m the value echo a.

Notice this does not evaluate echo a; instead, m is a thunk that points to the echo

function and that captures the value of x.

echo a = do
print a

1 echo (a): print∗(a)

main x = do
let m = echo x
m
m

2 main (x):
3 m <- echo [x]
4 _ <- invoke m

5 invoke m
(a) (b)

Figure 4.7: Part (a) shows two monadic λC functions. The mil blocks that
create and use monadic thunks to execute main are shown in
Part (b).

Part (b) shows the corresponding mil code for echo and main. The echo block

on Line 1 merely executes the primitive print∗. The main block, however, shows

how we allocate and invoke a thunk. Line 3 allocates the thunk referring to echo

and capturing x. The thunk is bound to m. Lines 4 and 5 invoke the thunk causing

echo to execute twice. Notice we do not allocate the thunk again — only one

allocation occurs, but we run the echo @ x “program” twice.

4.6 Compiling λC to MIL

We created a simple compiler from λC to Mil in order to generate tests for the

optimizations discussed later in this work. Our compiler implementation follows

5Again, some syntactic liberties are taken.
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the style used by Kennedy (2007) and in most cases it does not differ much from

numerous other compilers that translate the λ-calculus to a given intermediate

form. However, we will highlight some nuances of our translation.6

Consider again the definition of compose in Figure 4.3 (a) on Page 61. Our

compiler translates each λ, except the innermost (i.e., λx. f (g x)), to a block that

returns a closure. The innermost λ translates to a block that immediately jumps

to an implementation of the body of compose. This gives the sequence of blocks

shown in Figure 4.5 on Page 64 (excepting main, of course) and allows mil to

support partial application.

While general, this strategy produces code that does a lot of potentially un-

necessary work. When fully applied, a function of n arguments will create n− 1

closures, perform n− 1 jumps between blocks, and potentially copy arguments

between closures each time. Our uncurrying optimization (Chapter 5) can collapse

this work to one closure, one jump, and no argument copying in many cases.

Therefore, generating simple (and easy to analyze) code is a reasonable trade-off.

Monadic code presents other challenges. Monadic expressions do not directly

produce a value; they produce a thunk to be evaluated later. Therefore, when the

compiler first encounters a monadic expression, it generates a block that returns a

thunk. The block pointed to by the thunk executes the monadic expression.

The code shown for kleisli in Figure 4.8 illustrates this strategy. The kleisli

function in Part 4.8 (a) implements monadic composition, in which f and g produce

monadic results. Part 4.8 (a) shows a mil implementation of kleisli. Block m205 on

6Those interested in the full compiler can download the source from the url given in the

Appendix.
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Line 6 executes the body of kleisli. However, no blocks call m205 directly. Instead,

block b204 on Line 5 returns a thunk that points to m205 and captures all the

arguments to m205 (g, f, and x). b204 only executes after all arguments for kleisli

are collected; m205 can only execute by invoking the thunk returned by b204.

kleisli f g x = do
v← g x
f v

1 kleisli (): k201 {}
2 k201 {} f: k202 {f}
3 k202 {f} g: k203 {g, f}
4 k203 {g, f} x: b204 (g, x, f)
5 b204 (g, x, f): m205 [g, x, f]

6 m205 (g, x, f):
7 v207 <- g @ x

8 v1 <- invoke v207

9 v206 <- f @ v1

10 invoke v206

(a) (b)

Figure 4.8: Part (a) shows a λC implementation of the monadic composi-
tion function (sometimes called “Kleisli composition”). Part (b)
shows a mil implementation of the same function.

While the compiler follows the strategy above when it first encounters a mo-

nadic expression, it changes strategy when compiling binding statements that

follow the initial monadic expression. Instead of generating code that returns a

suspended computation, the compiler switches to generating code the invokes all

subsequent monadic values.

The block m205 in Figure 4.8 (b) (representing the body of the kleisli function)

illustrates this principle. Though kleisli ends with a monadic expression (f v), it

does not return a suspended computation representing f v; instead, it returns
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the result of executing f v. The statement on Line 9 evaluate f @ v1 and assigns

the result to v206. The next line invokes the thunk, immediately executing the

program returned by f @ v1. This is a case where the compiler generates code to

execute a sequence of monadic values, rather than code that returns a suspended

computation.

4.7 Executing MIL Programs

As stated in Section 4.2, mil’s design borrows heavily from three-address code, an

intermediate form that closely resembles an idealized assembly-language code. The

execution model for mil draws on its three-address code inspiration and executes

like an assembly-language for a simple register-based computer: execution begins

at a special designated point in the program and proceeds sequentially. When the

first block executed in the program “returns,” the program terminates.

Unlike assembly-language, mil blocks also act like functions. Each block

declares parameters and those names are only in scope over the block. Blocks

always return a monadic value. Closure, thunk, and data allocations already create

monadic values. The return keyword creates a computation that evaluates to the

given value. The value produced by the last statement in a given block is returned

to the block’s caller.

Within each block, any number of storage locations may be named on the left-

hand side of a bind (<-) statement. Those names are not global storage locations:

variables with the same name in different blocks do not affect each other. Values

can only be passed from one block to another as arguments, in a closure, or in a

monadic thunk.

When an @, invoke, or goto expression appears on the right-hand side of a
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bind statement, control-flow transfers to the appropriate block. For @ and invoke,

the label stored in the closure or thunk determines the block to execute. For goto,

the block is named directly. The value returned from the block is bound to the

variable on the left-hand side of the bind statement.

Mil’s syntax does not mention error handling or exceptions at all. However,

errors can arise in a number of areas, such as when no case alternatives match the

inspected value, or if a block is called with the wrong number of arguments. In all

cases of errors, we expect that an error would be generated by the mil runtime or

interpreter and that the program would terminate. More robust error handling

would certainly be an area for improvement in the future.

4.8 A Hoopl-friendly AST For MIL

As described in Section 3.2, hoopl uses the O and C types to express the shape

of the entry and exit points for a node. A node that is open on exit can only be

followed by a node that is open on entry. A sequence of nodes can be characterized

by the entry shape of the first node and the exit shape of the last node.

In hoopl terms, basic blocks (described in Section 2.2) are closed on entry and

closed on exit. Due to the constraints imposed by the shape type, none of the

nodes between the first and last will jump or branch to other nodes; they can only

execute one after another.

Figure 4.9 shows Stmt, the data type defining the block, bind, and done terms

from Figure 4.2 (Page 58). The Stmt type takes two type parameters, e and x,

representing the entry and exit shape of the statement. BlockEntry and CloEntry

represent the two types of blocks (basic and closure-capturing, respectively). Their

shape, C O, shows that they can only be used to begin a mil block. The Name and
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Label arguments help hoopl connect nodes together in the cfg. The Bind statement

(with shape O O) represents statements inside the block. The type ensures no block

begins or ends with a Bind. Blocks can end with either a Case or Done statement.

The Case value represents the case statement. The [Alt Tail ] argument to Case lists

each case alternative and provides a tail value to execute when the alternative is

matched. The ast uses Done to end a block with a Tail expression. The Name and

Label arguments to Case and Done make it easier to know the basic block being

analyzed when traversing the cfg backwards, as hoopl does not provide that

information to backwards rewrite or transfer functions.7

data Stmt e x where
BlockEntry :: Name→ Label→ [Name ]→ Stmt C O
CloEntry :: Name→ Label→ [Name ]→ Name→ Stmt C O
Bind :: Name→ Tail→ Stmt O O
Case :: Name→ [Alt Tail ]→ Stmt O C
Done :: Name→ Label→ Tail→ Stmt O C

Figure 4.9: Haskell data type representing mil block, bind, and done terms.
The C and O types (from hoopl) give the “shape” of each
statement.

Figure 4.10 shows the Tail values that represent the tail terms in Figure 4.2.

Notice the definition does not parameterize on shape. These values do not specify

the relationship among blocks in the cfg, as hoopl understands it, so we do not

give them a shape type. Return and Invoke represent the corresponding tail terms.

Enter corresponds to the @ operator. Goto and Prim represent the labeled jumps

7We discuss this issue, and suggest improvements, in Section 6.3.2.
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data Tail = Return Name
| Enter Name Name
| Goto Dest [Name ]
| Prim Name [Name ]
| Closure Dest [Name ]
| Thunk Dest [Name ]
| Invoke Name
| Constr Constructor [Name ]

Figure 4.10: Haskell data type representing tail terms.

b (v1, . . . , vn) and p∗(v1, . . . , vn). Closure allocates a closure (k {v1, . . . , vn}), Thunk

allocates a monadic thunk (b [v1, . . . , vn]), and Constr allocates a data value. The

Constructor type in Constr names the tag used for the data value. The Dest type

in Goto, Closure and Thunk identifies the block associated with the term. Notice

that Prim does not specify a Dest because there is no block (implemented in mil)

associated with a primitive function. Instead, Prim just specifies the primitive’s

name.

All tail terms allow only variables as arguments, not arbitrary expressions. The

Tail constructors enforce that restriction by only taking Name arguments. Similarly,

Stmt constructors only define arguments that are Names or Tails.

Recall m205 from Figure 4.8 (b) on Page 68, which implements the body of our

monadic composition function:

m205 (g, x, f):
v207 <- g @ x

v1 <- invoke v207

v206 <- f @ v1

invoke v206
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We can now show the Stmt and Tail values that represent m205:

m205 :: Label→ Graph Stmt C C
m205 label =

mkFirst (BlockEntry "m205" label ["g", "x", "f" ]) <∗> -- m205 (g, x, f):
mkMiddles [Bind "v207" (Enter "g" "x") -- v207 <- g @ x

, Bind "v1" (Invoke "v207") -- v1 <- invoke v207

, Bind "v206" (Enter "f" "v1") ] <∗> -- v206 <- f @ v1

mkLast (Done "m205" label (Invoke "v206")) -- invoke v206

m205 defines a basic block, as shown by its C C type. Hoopl provides mkFirst,

mkMiddles, and mkLast (Chapter 3, Figure 3.5) for lifting nodes into hoopl’s mona-

dic graph representation. The operator <∗> connects pieces of the graph together.

Hoopl uses the label argument to connect this definition to other basic blocks in a

larger program.

The BlockEntry value defines the block. The label argument will be used else-

where to refer to this block when manipulating or traversing the cfg built by

hoopl. In fact, the Dest type in Figure 4.10 is a tuple containing the label of a given

block and its name. The list of variables (["g", "x", "f" ]) defines the arguments in

scope at the beginning of the block. The three Bind statements that make up the

body of the block follow BlockEntry. The comment to the left of each statement

shows the operation implemented by that statement. Finally, the Done statement

at the end of the block shows that the result of the block will be the value returned

when the monadic thunk v206 executes.

4.9 MIL CFGs with Hoopl

As discussed in Section 3.2, hoopl uses the NonLocal typeclass to define the

successor and predecessor relationships among nodes in a cfg. Figure 4.11 gives
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the NonLocal instance for mil. The entryLabel definitions show that the Label

argument to BlockEntry and CloEntry serve to index mil blocks in the cfg. That is,

hoopl uses Label values to find a given block.

instance NonLocal Stmt where
entryLabel (BlockEntry l ) = l
entryLabel (CloEntry l ) = l
successors (Case alts) = [ l | (Alt (Goto ( , l) ))← alts ]
successors (Done (Goto ( , l) )) = [ l ]
successors = [ ]

Figure 4.11: Mil’s instance definition for NonLocal.

The successors definition shows that we only consider the last statement in a

block when specifying successors. Recall that each Case alternative will immedi-

ately jump to some block; when a block ends with a Case, we consider all those

blocks successors. When a block ends with a Goto, we specify the destination block

as the sole successor to the block. The block will have no successors for all other

Tail values.

Crucially, we do not consider any mil blocks mentioned in Goto expressions

on the right-hand side of a Bind statement as successors. This choice can make

certain transformations unsound if we are not careful, because some control-flow

facts will not be apparent to hoopl. However, we choose this representation in

order to allow support for the monadic transformations described in Section 6.1

on Page 119. We describe the scenarios that can lead to unsound transformations

in Section 5.8.1 on Page 112.
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4.10 Related Work

Mil builds on the large body of research and experience focused on monads and

their use in the Haskell programming language. Our work is not the first to use a

monadic intermediate language; previously published by Benton, Kennedy and

others describes a monadic intermediate language for Standard ML (sml). We

briefly describe monadic programming in Section 4.10.1, and discuss its relation-

ship to our work. In Section 4.10.2 we discuss Benton and Kennedy’s work, and

draw some comparisons with our own.

4.10.1 Monads & Haskell

Moggi (1991) proposed monads as a means to model computation in real programs

with side-effecting behaviors. Wadler popularized this notion as a way to structure

functional programs; in particular, as a way to allow side-effecting computation in

the “purely” functional λ-calculus.

Wadler (1990) described a way to translate the call-by-value λ-calculus into

computations in a particular monad. His notation uses a ‘∗’ to represent the

translation of a λ-calculus term to some monadic term, represented by M. For

example, he represents the translation of a λ expression as:

(λx. v)∗ = [(λx. v∗)]M .

Notice the ∗ moves inside the λ on the right, meaning the body of the λ will

be recursively translated. This scheme provided a special inspiration for mil; it
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essentially gives the translation of λ terms to closure-capturing blocks:

λx. v = k1 {} x: v.

Mil differs, however, by treating the allocation of closures and other data structures

as side-effecting computation. In Wadler’s scheme, those operations remain pure.

4.10.2 MLj & SML.NET

Benton, Kennedy and colleagues (1998) implemented mlj, a compiler for Standard

ML (sml) that targeted the Java Virtual Machine. Benton, Kennedy, and a different

group of co-authors later implemented sml.net (2004, 2005), another sml com-

piler that targeted Microsoft’s Common Language Runtime. Both compilers first

translated sml into a typed mil. The authors did not publish a description of the

mil for sml.net, but their 1998 paper gives extensive details for the mil used by

mlj. They do not use the term, but we will call their intermediate language milj,

to distinguish it from our mil.

Benton and colleagues designed a sophisticated type system for milj; our mil

does not use types. Their type system represents several side-effects, including

allocations. They used type-directed optimization to eliminate side-effecting dead-

code that only allocates; we can do the same over mil blocks using dead-code

analysis that determines if, in the binding v <- tail, v is dead and tail is a closure,

data, or thunk allocation.

Milj represents monadic binding as do {x← m1; m2}, where m1 and m2 can

be any milj expression. This representation allows nested monadic terms like

do {x ← do {y ← m1; m2}; m3}. Kennedy (2007) shows how these terms can
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be optimized by exploiting associativity. For example, the term above becomes

do {y← m1; x← m2; m3}. However, he also shows that the transformation can be

needed O(n2) times, where n is the number of terms (i.e., x) bound, depending on

the order in which this transformation is interleaved with others.

Our mil does not express nested monadic computations as in milj. The milj

program do {x← do {y← m1; m2}; m3} becomes:

b (. . .):
y <- m1 (. . .)
x <- m2 (. . .)
m3

where m1 and m2 implement m1 and m2; the translation of m3 depends on the form

of m3, of course, so we leave it unspecified. In our representation, m1 and m2

become separate mil blocks.

The transformation that Kennedy describes appears as inlining in mil; that

is, for an appropriate m1, we can inline the block into b. It is an open question if

inlining for non-recursive blocks in mil can be achieved in better than O(n2) time.

4.11 Summary

This chapter presented our Monadic Intermediate Language (mil). Mil resembles

three-address code in several ways: arbitrarily many registers can be named,

nested expressions are not allowed, and implementation details are made explicit.

The mil’s unique features include separate representations for closure-capturing

and basic blocks, and the use of monadic tail expressions. Though we have not

included the translation here, our implementation of a compiler from λC to mil

gives us confidence that every λC program can be represented in mil.
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Uncurrying

Many functional languages allow programmers to write definitions that take

advantage of partial application. Partial application means to give a function only

some of its arguments, resulting in a new function that takes the remaining

arguments. A function definition that supports partial application is said to be in

curried style. In contrast, an uncurried function is defined such that it can only be

applied to all of its arguments at once.

Partial application can be very convenient for programmers, but it can also be

very inefficient. Conceptually, an uncurried function can do real work with each

application — that is, each application executes the body of the function. A curried

function does not do any real work until given all its arguments; each in-between

application essentially creates a new function.

This chapter describes our implementation of uncurrying, an optimization

that reduces the number of partial applications in a program. Through dataflow

analysis, we find partial applications for a given function within a block of mil

code. We replace those partial applications with full applications to the function,

or at least fewer partial applications.

Section 5.1 describes partial application in more detail; Section 5.2 discusses

drawbacks to supporting partial application. We introduce several examples that

will be used to illustrate our optimization in Section 5.3 and discuss uncurrying as
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applied to mil in Section 5.4. We present our dataflow equations for uncurrying in

Section 5.5 and our rewriting strategy in Section 5.6. We show our implementation

in Section 5.7. We give two extended examples in Section 5.8, demonstrating our

optimization’s utility on more complicated cfgs. Many other implementations

of uncurrying have been described elsewhere; we discuss those in Section 5.9.

Section 5.10 summarizes our contribution.

5.1 Partial Application

Partial application in functional programming promotes reusability and abstraction.

It allows the programmer to define specialized functions by fixing some of the

arguments to a general function.

map1 :: (a→ b)→ [a ]→ [b ]
map1 f xs = . . .

Figure 5.1: A Haskell definition in curried style. map1 can be partially
applied directly to produce specialized functions.

For example, the Haskell code in Figure 5.1 defines map1 in curried style. We

can create specialized mapping functions by applying map1 to a single argument.

The following functions convert all their arguments to uppercase or square all

integers in a list, respectively:

upCase1 :: [Char ]→ [Char ]
upCase1 = map1 toUpper
square1 :: [Int ]→ [Int ]
square1 = map1 (ˆ2)
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5.2 Cost of Partial Application

At the assembly language level, function application is expensive because multiple

operations must take place to implement it: saving registers, loading addresses,

and finally jumping to the target location. Partial application exaggerates all these

costs by essentially creating a series of functions, each of which takes one argument

and returns a closure that points to the next function in the chain. Only when all

the arguments are gathered does the function do “real work” — that is, something

besides allocating closures and gathering up arguments.

Partial application also influences the code generated to implement function

application. Rather than generate specialized code for partially versus fully-applied

functions, it is simplest to generate the same code for all applications, partial or

otherwise; meaning every function application pays the price of partial application,

even if the function is “obviously” fully-applied.

5.3 Partial Application in MIL

Recall that mil defines two types of blocks: “closure-capturing” and “normal.”

Normal blocks act much like labeled locations in a program and are written

“b (v1, . . . , vn): . . . ” A normal block is executed by writing “b (v1, . . . , vn).”

Closure-capturing blocks are also like labeled locations, except that they expect

to receive a closure and an argument when called. We write closure-capturing

blocks as ”k {v1, . . . , vn} x: . . . ” A closure-capturing block is always executed as

the result of an expression like “f @ x.”

These two definitions allow mil to represent function application uniformly.

For a function with n arguments, n closure-capturing blocks and at least one basic
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block will be generated. The first (n− 1) closure-capturing blocks are typically of

the form:

ki {v1, . . . , vi} x: ki+1 {v1, . . . , vi, x}

This means the block ki returns a new closure that points to the next block (ki+1)

and contains all the values from the original closure as well as the argument x

({v1, . . . , vi, x}).

The last block, kn−1, does not immediately return a new closure, but instead

calls a basic block, b, with all necessary arguments. In the general case, we write

kn−1 as:

kn−1 {v1, . . . , vn−1} x: b (v1, . . . , vn−1, x)

Of course, depending on the definition of the original function, we may not pass

all arguments to b, or pass them in the same order as they appear in the closure.

For example, Figure 5.2 (a) shows the λC definition for compose and its imple-

mentation in mil.1 The basic block k0 acts as the top-level entry point to compose.

The other basic block, compose, implements the body of compose. The two closure-

capturing blocks, k1 and k2 implement mil’s support for partial application. The

remaining closure-capturing block only executes when all of the arguments to

compose are available.

Executing k1 results in a closure that captures the argument f and points

to k2. The closure returned is equivalent to the expression compose a, with a

being the value held by the closure. Executing k2 returns a closure that captures

1This same program also appears in Figure 4.5 on Page 64.
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compose f g x = f (g x)

(a)

1 k0 (): k1 {}
2 k1 {} f: k2 {f}
3 k2 {f} g: k3 {f, g}
4 k3 {f, g} x: compose (f, g, x)

5 compose (f, g, x): . . . as in Figure 4.3 (b) on Page 61. . .

(b)

Figure 5.2: The compose function. Part (a) shows our λC definition. Part (b)
shows mil code implementing Part (a).

two values, f and g, and points to k3. The closure returned is equivalent to the

expression compose a b, with a and b held by the closure. The values returned

by these two blocks represent partially applied functions. The remaining closure-

capturing block, k3, does not return a value representing a partially applied

function, however.2 Instead, k3 immediately executes the compose block, and is

the same as evaluating compose a b c.

5.4 Uncurrying MIL blocks

Using the definition of compose given in Figure 5.2 (b), we can give a mil imple-

mentation of a partially-applied compose function, compose1 f = compose f :

compose1 (f):
t0 <- k0 ()
t0 @ f

2Unless, of course, compose a b c results in a function value!
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Examination of this definition reveals one opportunity for optimization: the call

“k0 ()” on the first line assigns the closure k1 {} to t0, which we immediately enter

on the next line with argument f. We can eliminate the call to k0 by allocating the

closure directly:

compose1 (f):
t0 <- k1 {}
t0 @ f

Now we can see that t0 holds the value k1 {}, a closure referring to block k1

and capturing no variables. Block k1 also returns a closure, this time capturing

its argument and pointing to block k2. With this knowledge, we can eliminate

the expression t0 @ f and instead create the closure directly, using the expression

k2 {f}:

compose1 (f):
t0 <- k1 {}
k2 {f}

Now we find that t0 is no longer used, allowing us to rewrite compose1 one

more time:

compose1 (f): k2 {f}

Thus, by uncurrying, we eliminate one call (k0 ()), one enter operation (t0 @ f),

and the creation of one closure (k1 {}).

Our uncurrying optimization transforms mil programs to eliminate @ opera-

tions as we did by hand for compose1. In essence, we determine if an @ operation

results in a known closure, allowing us to replace that expression with the closure

returned.
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5.5 Dataflow Equations

We implement uncurrying with a forwards dataflow analysis. Our facts indicate

if a given variable refers to a known closure. Facts are propagated to successor

blocks when the block ends with a call or case statement. We combine multiple

input facts for a given block by determining if all sets of facts agree on the value

of a given variable.

Figure 5.3 shows the dataflow equations used for our analysis. The sets Labels

and Vars contain all labels and all variables in the program, respectively. The Clo

set associates some label with a (possibly empty) list of variables. We use Clo

values to represent the location that a closure points to and the set of variables

that it captures. The Fact set defines the facts that we can compute, each of which

is a pair, (v, p), associating a bound variable v with a value p. If p ∈ Clo, then v

refers to a known location and an associated set of captured variables. Otherwise,

if p = >, then v refers to some unknown value.

We combine sets of Fact values using a meet operator, ∧, as defined in Equa-

tion (5.2), over two sets of facts, F1 and F2. When a variable v only appears in F1

or F2, we assume we do not not know what value v may represent, so we add

(v,>) to the result. When a variable appears in both F1 and F2, we create a new

pair by combining the two associated Clo values using the u operator defined in

Equation (5.1). The resulting pair has the same variable but a (possibly) new Clo

value. Together, Fact and ∧ form a lattice as described in Section 2.3.1 on Page 9.

For example, if F1 = {(v, l {a}), (w, l {b})} and F2 = {(u, l {a}), (v, l {a}),

(w, l {a})} then F1∧ F2 would be {(u,>), (v, l {a}), (w,>)}. Because u only appears

in one set, we cannot assume it will always refer to l {a}, so we add the pair (u,>)
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Facts
Labels = Set of all program labels.

Vars = Set of all variables.
Clo = {b {v1, . . . , vn} | b ∈ Labels, vi ∈ Var, n > 0}.

Fact = Vars× ({>} ∪Clo).

Meet

p u q =

{
p when p = q
> when p 6= q,

(5.1)

where p, q ∈ Clo.

F1 ∧ F2 =
{(v, p u q) | (v, p) ∈ F1, (v, q) ∈ F2} ∪
{(v,>) | v ∈ dom(F1), v 6∈ dom(F2) ∨

v 6∈ dom(F1), v ∈ dom(F2)},
(5.2)

where F1, F2 ∈ Fact.

Transfer Function
t(F, b (. . .):) = F; t(F, k {. . .} x:) = F (5.3), (5.4)

t(F, v <- b {v1}) =

{
(F ∪ {(v, b {v1})}) \ uses(F, v) when v 6= v1

delete(F, v) when v = v1
(5.5)

t(F, v <- . . .) = {(v,>)} ∪ (F \ uses(F, v)) (5.6)
t(F, b (v)) = {b : rename(args(b), v, restrict(F, v))} (5.7)

t

(
F,

case v of
C1 v1 -> b1 (w1)
...

)
=


b1 : rename(args(b1), w1,

trim(restrict(F, w1), v1))
...

 (5.8)

t(F, _) = ∅, (5.9)
where F ∈ Fact.

uses(F, v) =
{(u, l {v1, . . . , vn}) |
(u, l {v1, . . . , vn}) ∈ F, v ∈ {v1, . . . , vn}}

(5.10)

rename(u, v, F) =
{(u, p) | (v′, p) ∈ F, v = v′}

∪ {(v′, p) | (v′, p) ∈ F, v 6= v′} (5.11)

delete(F, v) = {(u, p) | (u, p) ∈ F, u 6= v} (5.12)
restrict(F, v) = {(v′, p) | (v′, p) ∈ F, v = v′} (5.13)

trim(F, v) = delete(F \ uses(F, v), v) (5.14)
args(b) = . . . set of parameters declared by b. . . , (5.15)

where F ∈ Fact, v ∈ Var.

Figure 5.3: Dataflow facts and equations for our uncurrying transformation.

85



Chapter 5 Uncurrying

to the result. The variable v appears in both sets with the same closure, so we add

(v, l {a} u l {a}), or (v, l {a}), to the result set. Finally, w appears in both sets, but

the closure associated with it in each differs: l {b} in F1 and l {a} in F2. Therefore,

we add (w,>) to the result set.

Our transfer function, t, takes a statement and a set of Fact values as arguments.

It returns a Fact set containing new facts based on the statement given. We define

t by cases over mil statements.

Equations (5.3) and (5.4) — Block Entry These equations represent the entry

points for normal and closure-capturing blocks. We do not modify the facts

received, but just pass them along to the next statement in the block.

Equation (5.5) — Bind To Closure When the right-hand side of a <- statement

creates a closure, as in v <- b {v1, . . . , vn}, we may or may not create a new

fact. If v appears in {v1, . . . , vn} (as in “v <- k1 {}; v <- k2 {v}”), then we

simply delete any facts mentioning v and we do not create a new fact.

Otherwise we create the fact (v, b {v1, . . . , vn}). Because v has been redefined,

we must invalidate any previous facts that refer to v, as they do not refer to

the new value of v. To ensure we remove all references to v, we apply uses

to the combined set F ∪ {(v, b {v1, . . . , vn})}. We subtract the result from F,

thereby removing any facts that refer to v.

Equation (5.6) — Any Other Bind Any other binding, v <- . . ., that does not cre-

ate a closure invalidates any facts about v. Therefore, we first remove all

facts referring to v in F with the uses function. We then create a new fact

associating v with >, indicating that we know v does not refer to a closure.
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Finally, we combine the new set and new fact and return the combined set.

Mil blocks that end with a case statement can have multiple successors. Data-

flow analysis does not usually specify that different facts go to different successors,

but we do so here. The notation {b1 : F1, b2 : F2} used in Equations (5.7) and (5.8)

means we transfer the set of facts F1 to the successor block b1, and the set of facts

F2 to the successor block b2.

Mil blocks also specify formal parameters, and the names of those parameters

usually differ from the actual variables used in a given “goto” expressions. Within

a block, we collect facts using the names local to that block. Those facts will

have no meaning in successor blocks (or worse, the wrong meaning) because the

variable names will differ. Equation 5.11 defines rename, which takes a set of facts,

F, and two variables, u and v. If a fact about v exists in F, we update it to be about

u. Combined with the args function, which retrieves the list of formal parameters

for a block, rename can update a set of facts from one block so that it makes sense

in a successor block.

The two equations,(5.7) and (5.8), describe how we transfer facts between blocks

using the functions given above. In this presentation, we only show one variable,

but the equations can be easily extended to a multiple variables. We also use a

number of auxiliary definitions, besides those mentioned above. The trim function

applies the uses and delete functions to remove all facts from F that refer to or are

about v. The delete function removes any facts about v from F. Conversely, the

restrict function filters all facts from F except those about v.

Equation (5.7) — Goto Block When a “goto” expression, such as b (v), appears at

the end of a block, we transfer the facts collected so far to the successor block.
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We use the restrict function to remove all facts from F except those about v.

We then rename the facts to match the successor block b, and pass those facts

along to b.

Equation (5.8) — Case Statement A case statement requires careful treatment. Re-

call that each alternative arm jumps immediately to another block (b1, etc.

in the equation). We pass separate sets of facts to each successor, tailored

to the arguments that each block declares. Additionally, the alternative can

bind new variables, shadowing previous bindings. Any of our existing facts

that are about or that refer to shadowed variables must be removed from our

facts before we pass them to successor blocks.

For each successor block bi, we first restrict our facts to include only those

variables passed to the block (i.e., wi). From that restricted set, we trim any

facts that mention a binding from the case alternative (i.e., vi). Finally, we

rename those facts according the formal arguments of the successor block

bi. We stress that, while these equations only mention one variable in the

alternative and in the call to bi, making an operation like trim trivial, they

can easily be extended to multiple variables, allowing them to be used with

real mil programs.

Equation (5.9) — All Other Statements Our final equation covers all other types

of expression that can appear at the end of a block, such as a function

application or allocation. None of these expressions specify a successor block,

so in a sense it does not matter what they return as that value will be ignored.

For completeness, however, we return the empty set in this final case.
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5.6 Rewriting

The facts gathered by our dataflow analysis allow us to replace @ expressions with

closure allocations if we know the value that the expression results in. For example,

let F be the facts computed so far and v <- f @ y the statement we are considering.

If (f, k0 {x}) ∈ F, then we know f represents the closure k0 {x}, and we may be

able to rewrite the expression. If k0 returns k1 {x, y}, then we can rewrite the

statement to v <- k1 {x, y}. Alternatively, if k0 immediately calls b0 (x, y), we can

rewrite the statement to v <- b0 (x, y). In both cases it is likely that the formal

arguments to k2 differ from those in either the closure k0 {x} or the expression

f @ y, and we will need to rename our facts. However, as explained previously

when discussing t, that is a straightforward operation.

The example we discussed in Section 5.4 does not match the optimization just

discussed on one crucial point: replacing calls to normal blocks on the right-hand

side of a <- with their closure result. Our implementation relies on another,

more general, optimization that inlines simple blocks into their predecessor. We

discuss the optimization in Chapter 6, Section 6.1.1 on Page 120, but in short

that optimization will inline calls to blocks such as compose, so a statement like

v <- compose () becomes v <- absBodyL201 {}, where absBodyL201 is the label in

the closure returned by compose ().

5.7 Implementation

Originally, we called this transformation “closure-collapse” because it “collapses”

the construction of multiple closures into the construction of a single closure. Later,

we learned that this optimization is known as “uncurrying,” but at the point the
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code had already been written. The “collapse” prefix in the code shown is an

artifact of our previous name for the analysis.

Figure 5.4 gives an example program that we will use throughout this section

to illustrate our implementation. The program takes a string as input, converts it

to an integer, doubles that value, and returns the result. The program consists of

five blocks. Two of the blocks, k0 and k1, are closure-capturing. Two others, add

and toInt, are normal blocks that call runtime primitives. The final block, main, is

also a normal block but is treated as the entry point for the program.

main (s):
n <- toInt (s)
v0 <- k0 {}
v1 <- v0 @ n

v2 <- v1 @ n

return v2

k0 {} a: k1 {a}
k1 {a} b: add (a, b)
add (x, y): plus∗(x, y)
toInt (s): atoi∗(s)

Figure 5.4: A mil program we will use to illustrate our implementation of
uncurrying.

We present our implementation in five sections, reflecting the structure of our

dataflow equations above. We first give the types used, followed by the definition

of our lattice, then our transfer function, then our rewriting function, and finally

we show the driver that applies the optimization to a given program.
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5.7.1 Types

Figure 5.5 shows the types used by our implementation to represent the sets given

in Figure 5.3. The Clo type represents Clo. Label and Var correspond to Label and

Var, respectively. For documentation, the Label type pairs a string with hoopl’s

Label type. Clo stores a Label value, giving the block that the closure refers to, and

a list of captured variables, [Var ], representing the environment captured by the

closure.

data Clo = Clo Label [Var ]
type Label = (String, Hoopl.Label)
type Var = String
data DestOf = Jump Label [Int ] | Capture Label Bool
type Fact = Map Var (WithTop Clo)

Figure 5.5: The types for our analysis. Referring to the sets defined in
Figure 5.3, Clo represents Clo and Fact represents Fact. DestOf
is not represented in our dataflow equations; it describes the
behavior of each mil block that we may use while rewriting.

The DestOf type captures the behavior of a given closure-capturing block.

Recall that we limit closure-capturing blocks to containing a single tail expression.

The DestOf type uses the Capture and Jump constructors to indicate if the block

returns a closure or if it jumps to a normal block, respectively. The Label value in

both is a destination: either the label stored in the closure returned, or the block

that the closure jumps to. We use these values to determine how we rewrite a

given “enter” expression.

The Capture value represents a block with the form “k0 {v1, . . . , vn} x: k1 {. . .},”
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The flag in the Capture constructor indicates if k1 {. . .} includes the x argument

or not. If True, the argument is included in the closure returned. Otherwise, the

argument is ignored.

The Jump value represents a block with the form “k {v1, . . . , vn} x: b (. . .)” The

arguments to b are not necessarily in the same order as the parameters for the

closure-capturing block k. Each integer in the list given to Jump corresponds to

one of k’s parameters. The value of the integer gives the position of that parameter

in the call to b. The arguments in the call to b are built by traversing the list,

putting the variable indicated by each index into the corresponding argument for

the block.3

For example, in the following, the variables in the closure received by c do not

appear in the same order as expected by block l:

c {a, b} x: l (x, a, b)
l (x, a, b): ...

We represent c using Jump l [2, 0, 1 ], because the variables from the closure {a, b}

and the argument x must be given to l in the order (x, a, b).

Fact is a finite map, representing our Fact set. Hoopl’s WithTop type adds a

> value to any other type. WithTop Clo then represents the set {>} ∪ {Clo}. Fact,

then, associates variables with values in the set {>} ∪ {Clo}.
3This situation can also apply to Capture blocks and we would need to update our implemen-

tation our compiler’s code generation strategy changed or if we began writing mil programs

directly.
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5.7.2 Lattice & Meet Operator

Figure 5.6 shows the DataflowLattice structure defined for our analysis. We set

fact_bot to an empty map, meaning that we start without any information. We

define lub over Clos, just like u in Figure 5.3. We use joinMaps, provided by hoopl,

and toJoin to transform lub into a function that operates over finite maps and that

has the signature required by hoopl’s fact_join definition.

collapseLattice :: DataflowLattice Fact
collapseLattice = DataflowLattice { fact_name = "Closure collapse"

, fact_bot = Map.empty
, fact_join = joinMaps (toJoin lub)}

toJoin :: (a→ a→ (ChangeFlag, a))
→ (Hoopl.Label→ OldFact a→ NewFact a→ (ChangeFlag, a))

toJoin f = \ (OldFact o) (NewFact n)→ f o n

lub :: WithTop Clo→ WithTop Clo→ (ChangeFlag, WithTop Clo)
lub (PElem (Clo l )) new@(PElem (Clo l′ ))
| l == l′ = (NoChange, new)
| otherwise = (SomeChange, Top)

lub Top = (NoChange, Top)
lub = (SomeChange, Top)

Figure 5.6: The hoopl DataflowLattice declaration representing the lattice
used by our analysis.

5.7.3 Transfer Function

The definition of transfer in Figure 5.7 gives the implementation of t from Figure 5.3.

The top-level definition, collapseTransfer, packages transfer into the FwdTransfer

value that hoopl uses to represent forwards transfer functions. The blockParams

93



Chapter 5 Uncurrying

argument to collapseTransfer gives the list of parameters for every ordinary block

in the program, which we use during renaming operations. The first argument to

transfer is the statement we are analyzing, and the second is our facts so far. transfer

depends on a number of auxiliary functions: kill, using, etc. We will describe each

function as it is first encountered when describing transfer. The Map prefix on

some of the functions used by transfer and related definitions indicates they are

imported from Haskell’s standard Data.Map library. We define transfer by cases,

analogous to the cases given in Equations (5.3) through (5.9).

BlockEntry, CloEntry — These cases apply to the entry point of each normal or

closure-capturing block, implementing Equations (5.3) and (5.4). In both

instances they just pass the facts received on to the rest of the block.

Bind v (Closure dest args) — This case corresponds to Equation 5.5, representing

a bind statement that allocates a closure on its right-hand side. Binding a

variable invalidates any facts previously collected about that variable. The

local definition of facts′ on Line 10 uses the kill function to remove all facts

from fact that mention v. If v appears in args then the closure mentions the

variable being bound. If that is the case, then we do not want to create a new

fact, and we want to remove any existing facts about v. Line 8 accomplishes

both tasks by first deleting any facts about v from facts′ and then returning

the updated map. Otherwise, on Line 9 we create a new fact describing the

closure (using hoopl’s PElem constructor), insert it into facts′, and return the

result.

Bind v — This case implements Equation 5.6. It removes any facts mentioning
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1 collapseTransfer :: Map Hoopl.Label [Name ]→ FwdTransfer Stmt Fact
2 collapseTransfer blockParams = mkFTransfer transfer
3 where
4 transfer :: Stmt e x→ Fact→ Hoopl.Fact x Fact
5 transfer (BlockEntry ) facts = facts
6 transfer (CloEntry ) facts = facts
7 transfer (Bind v (Closure dest args)) facts
8 | v ‘elem‘ args = Map.delete v facts′

9 | otherwise = Map.insert v (PElem (Clo dest args)) facts′

10 where facts′ = kill v facts
11 transfer (Bind v ) facts = Map.insert v Top (kill v facts)
12 transfer (Done (Goto ( , dest) args)) facts = mapSingleton dest facts′

13 where facts′ = rename args (blockParams ! dest) (restrict facts args)
14 transfer (Case alts) facts = mkFactBase collapseLattice facts′

15 where facts′ = [(dest, rename args params trimmed) |
16 (Alt binds (Goto ( , dest) args))← alts,
17 let trimmed = trim (restrict facts args) binds
18 params = blockParams ! dest ]
19 transfer (Done ) facts = mkFactBase collapseLattice [ ]
20 kill :: Name→ Fact→ Fact
21 kill = Map.filter . keep
22 keep :: Name→ WithTop Clo→ Bool
23 keep Top = True
24 keep v (PElem (Clo vs)) = not (v ‘elem‘ vs)
25 restrict :: Fact→ [Var ]→ Fact
26 restrict fact vs = Map.filterWithKey (\v → v ‘elem‘ vs) fact
27 trim :: Fact→ [Var ]→ Fact
28 trim fact vs = foldr Map.delete (foldr kill fact vs) vs
29 rename :: [Name ]→ [Name ]→ Fact→ Fact
30 rename args params = Map.mapKeys renameKey
31 where renameKey v = maybe v (params!!) (v ‘elemIndex‘ args)

Figure 5.7: Our implementation of the transfer function t from Figure 5.3.
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v and inserts a new fact associating v with Top, indicating we do not know

what value v may have.

Done (Goto ( , dest) args) — On Line 12, we implement Equation 5.7. Recall

that we must filter our facts to those about variables in args, and that we must

rename those facts to match the parameters declared by the block represented

by dest. The definition of facts′ (Line 13) uses the restrict function for filtering,

and the rename function for renaming. We use hoopl’s mapSingleton function

to create a set of facts associated with the block given by dest, analogous to

the {b : . . . } notation used in Equation 5.7.

Case alts — Recall that Equation 5.8 produced a map associating each successor

block with a set of facts. The list comprehension on Lines 15–18 defines

facts′ as a list of (Label, Fact) pairs. Each pair represents the facts passed to

a given successor block. On Line 14, we apply hoopl’s mkFactBase function

to facts′, returning a map associating each Label with a Fact set — just as in

Equation 5.8.

Line 16 extracts each alternative from alts, the list of alternatives associated

with the case statement. We defined mil such that each alternative immedi-

ately jumps to a block; dest represents the destination block for the alternative,

and args the variables passed to that block. Each alternative can introduce

new bindings, represented here by the binds list. On Line 17, we use restrict

to filter our set of facts to those about args. Because new bindings introduced

by the alternative can invalidate existing facts, we use the trim function to

remove any facts from the restricted set that are about or mention a variable
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in binds. Finally, we need to rename our facts to match the parameter names

used by the successor block. On Line 18, we retrieve the parameter list for the

given block. Line 15 uses the rename function to rename all facts in trimmed

that are about variables in args to match the names given in params.

Done — A block that does not end in one of the cases above has no successors.

Therefore, we just return an empty set of facts (as in Equation 5.9.). We

construct an empty set by passing mkFactBase an empty list.

Statement n v0 v1 v2

n <- toInt (s)
v0 <- k0 {} >
v1 <- v0 @ n · k0 {}
v2 <- v1 @ n · · >
return v2 · · · >

Figure 5.8: Facts about each variable in the main block of our example
program from Figure 5.4. A blank entry means the variable
has no facts associated with it yet. A “·” entry means the fact
remains unchanged.

Figure 5.8 shows the facts gathered for each variable in the main block of our

sample program, after the corresponding statement is analyzed. The variables n,

v1, and v2 are assigned > because the right-hand side of the <- statement for each

does not directly create a closure. Only v0 is assigned a Clo value, k0 {}, because

the right-hand side of its <- statement is in the correct form. We will see in the

next section how these facts evolve as the program is rewritten.
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5.7.4 Rewrite

Figure 5.9 shows the top-level implementation of our rewrite function for the

uncurrying optimization. collapseRewrite creates the rewriter that can uncurry a

mil program. The blocks argument associates every closure-capturing block in our

program with a DestOf value. DestOf , as explained in Section 5.7.1, indicates if

the block returns a closure or jumps immediately to another block. The rewrite

function actually implements the uncurrying transformation; we will describe it

after discussing how we use hoopl’s iterative rewriting function, iterFwdRw.

1 collapseRewrite :: FuelMonad m⇒ Map Hoopl.Label DestOf
2 → FwdRewrite m Stmt Fact
3 collapseRewrite blocks = iterFwdRw (mkFRewrite rewriter)

Figure 5.9: The top-level implementation of our uncurrying rewriter..

On Line 3, collapseRewrite applies hoopl’s iterFwdRw and mkFRewrite functions

to create a FwdRewrite value. iterFwdRw applies rewriter repeatedly, until the Graph

representing the program stops changing. Hoopl computes new facts (using

collapseTransfer) after each rewrite. This ensures that a chain of closure allocations

will be collapsed into a single allocation, if possible.

Figure 5.10 demonstrates this iterative process by showing how the main block

in our example program changes over three iterations. The second column of each

row shows facts computed for the program text in the first column. The value of

blocks stays constant throughout, so we only show it once.

During the first iteration, rewriter transforms v1 <- v0 @ n to v1 <- k1 {n}, be-
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cause v0 holds the closure k0 {}, and blocks tells us that k0 returns a closure

pointing to k1.

Iteration main Facts blocks
1 n <- toInt (s)

v0 <- k0 {}
v1 <- v0 @ n

v2 <- v1 @ n

return v2

(n, >),
(v0, k0 {}),
(v1, >),
(v2, >)

k0: Capture k1 True
k1: Jump add [0, 1 ]

2 n <- toInt (s)
v0 <- k0 {}

→ v1 <- k1 {n}
v2 <- v1 @ n

return v2

(n, >),
(v0, k0 {}),
(v1, k1 {n}),
(v2, >)

3 n <- toInt (s)
v0 <- k0 {}
v1 <- k1 {n}

→ v2 <- add (n, n)
return v2

(n, >),
(v0, k0 {}),
(v1, k1 {n}),
(v2, add (n, n))

Figure 5.10: How rewriter transforms the main block. Each row represents
main after the particular iteration. The first line shows the
original program. The arrows shows the line that changed
during each iteration. After the second iteration, the program
stops changing.

The facts shown for the second iteration reflect the rewrite made, associating v1

with k1 {n}. rewriter transforms v2 <- v1 @ n to v2 <- add (n, n) after this iteration

because v1 refers to k1 and blocks tells us that k1 jumps immediately to add. No

changes occur after the third iteration because no statements remain that can be

rewritten, and hoopl stops applying rewriter. Note, however, that we could apply

dead-code elimination at this point to remove v0 and v1, because they are no
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longer referenced.

Figure 5.11 shows the functions that implement our uncurrying optimization.4

Line 3 of rewriter rewrites f @ x expressions when they occur at the end of a block.

Line 4 rewrites when f @ x appears on the right-hand side of a <- statement. In

the first case, done n l (collapse facts f x) produces return e when collapse returns

Just e (i.e., a rewritten expression). In the second case, bind v (collapse facts f x)

behaves similarly, producing v <- e when collapse returns Just e. Both done and bind

are defined in a separate file, not shown; they make it easier to construct Done and

Bind values based on the Maybe Tail value returned by collapse. In all other cases,

no rewriting occurs.

The collapse function takes a set of facts and two names, representing the left

and right-hand arguments of the expression f @ x. When f is associated with a

closure value, k {. . .}, in the facts map (Line 9), collapse uses the blocks argument

to look up the behavior of the destination k. Lines 11 and 13 test if k returns a

closure or jumps immediately to another block. In the first case, collapse returns a

new closure-creating expression (dest {. . .}). In the second case, collapse returns a

new goto expression (dest (. . .)).

If the destination immediately jumps to another block (Line 11), then we will

rewrite f @ x to call the block directly. The list of integers associated with Jump

specifies the order in which arguments were taken from the closure and passed to

the block. collapse uses the fromUses function to re-order arguments appropriately.

In Figure 5.10, we showed that the DestOf value associated with k1 is

Jump add [0, 1 ]. The list [0, 1 ] indicates that add takes arguments in the same

4Note that these definition are local to collapseRewrite, so the blocks argument remains in scope.
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1 rewriter :: FuelMonad m⇒ forall e x . Stmt e x→ Fact
2 → m (Maybe (ProgM e x))
3 rewriter (Done n l (Enter f x)) facts = done n l (collapse facts f x)
4 rewriter (Bind v (Enter f x)) facts = bind v (collapse facts f x)
5 rewriter = return Nothing
6 collapse :: Fact→ Name→ Name→ Maybe Tail
7 collapse facts f x =
8 case Map.lookup f facts of
9 Just (PElem (Clo dest@( , l) vs))→

10 case Map.lookup l blocks of
11 Just (Jump dest uses)→
12 Just (Goto dest (fromUses uses (vs ++ [x ])))
13 Just (Capture dest usesArg)→
14 Just (Closure dest
15 (if usesArg then vs ++ [x ] else vs))
16 → Nothing
17 → Nothing
18 fromUses :: [Int ]→ [Name ]→ [Name ]
19 fromUses idxs args = map (args!!) idxs

Figure 5.11: The implementation of our uncurrying rewriter.

order as they appear in the closure. However, if add took arguments in the

opposite order, k1 and add would look like the following code:

k1 {a} b: add (b, a)
add (x, y): ...

and the DestOf value associated with k1 would be Jump add [1, 0 ].

If the destination returns a closure (Line 13), then we rewrite f @ x to allocate

the closure directly. The Boolean value usesArg indicates if the closure returned

should capture the argument x or not.
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5.7.5 Optimization Pass

Figure 5.12 presents collapse, which applies the uncurrying dataflow analysis

and rewrite to the mil program represented by the argument program. Line 3

analyzes and transforms program by passing appropriate arguments to hoopl’s

analyzeAndRewriteFwd function. On Line 2, we evaluate hoopl’s monadic program

using runSimple, which provides a monad with infinite optimization fuel.

Half of Figure 5.12 creates arguments for analyzeAndRewriteFwd, which we will

detail in order.

fwd — This argument packages the lattice, transfer and rewrite definitions we

described in Sections 5.7.2, 5.7.3, and 5.7.4.

JustC labels — We must give hoopl all entry points for the program analyzed.

These labels tell hoopl where to start traversing the program graph. Mil

does not define any particular block as an entry point, so all blocks in program

will be analyzed. This argument’s type is MaybeC C [Label ], which requires

us to use the JustC constructor.

program — This argument gives the program that will be analyzed and (possibly)

transformed.

initial — The final argument gives initial facts for each label. Our analysis does

not specify any prior knowledge at each label, so we set all initial facts to

Map.empty. That is the value we gave fact_bot when defining our Data flow -

Lattice value (Figure 5.6).
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1 collapse :: ProgM C C→ ProgM C C
2 collapse program = runSimple $ do
3 (p, , )← analyzeAndRewriteFwd fwd (JustC labels) program initial
4 return p
5 where
6 labels :: [Hoopl.Label ]
7 labels = entryLabels program
8 initial :: FactBase Fact
9 initial = mapFromList (zip labels (repeat Map.empty))

10 fwd :: FwdPass SimpleFuelMonad Stmt Fact
11 fwd = FwdPass { fp_lattice = collapseLattice
12 , fp_transfer = collapseTransfer blockArgs
13 , fp_rewrite = collapseRewrite (destinations labels)}
14 blockArgs :: Map Hoopl.Label [Var ]
15 blockArgs = Map.fromList [ (l, args) |
16 ( , BlockEntry l args)← entryPoints program ]

17 destinations :: [Hoopl.Label ]→ Map Hoopl.Label DestOf
18 destinations = Map.fromList . catMaybes .
19 map (uncurry destOf ) . catMaybes . map (blockOfLabel program)

20 destOf :: Label→ Block Stmt C C→ Maybe (Hoopl.Label, DestOf )
21 destOf ( , l) block =
22 case blockToNodeList′ block of
23 (JustC (CloEntry args arg), , JustC (Done (Goto d uses)))→
24 Just (l, Jump d (mapUses uses (args ++ [arg ])))
25 (JustC (CloEntry arg), , JustC (Done (Closure d args)))→
26 Just (l, Capture d (arg ‘elem‘ args))
27 → Nothing
28 mapUses :: [Name ]→ [Name ]→ [Int ]
29 mapUses uses args = catMaybes (map (‘elemIndex‘args) uses)

Figure 5.12: The function that puts together all definitions for our imple-
mentation of the uncurrying optimization.
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The other half of Figure 5.12 describes how we create the blocks argument passed

to collapseRewrite. The destinations function enumerates all blocks in program to

find all closure-capturing blocks. destOf determines the behavior of each closure-

capturing block and creates the appropriate Jump or Capture value. The result of

destinations becomes the blocks argument for collapseRewrite.

5.8 Example: Uncurrying Across Blocks

The example shown in the previous section demonstrated that we can eliminate

unnecessary @ expressions within a block. As we will demonstrate with the next

two examples, the dataflow algorithm enables us to do the same across multiple

blocks, even in the presence of loops.

Uncurrying map

Figure 5.13 (a) shows a simple λC program that uses map to turn a list into a list of

lists. Part (b) shows the mil translation of Part (a). The listing is rather verbose as

it represents the output of our λC to mil compiler.

In this program, main applies toList to each element in ns using the map function.

Per the definition of map, the Cons arm applies f to an element x, and then

recursively calls map to apply f to the rest of the list. Lines 21–28 in Part (b)

implement the Cons arm of map. On Line 23, f is applied to the element x.

Lines 25–27 recursively call map with the remainder of the list. Line 28 returns the

updated list.

In the body of cons, there are two opportunities to eliminate @ expressions. f

always represents the toList function, which is implemented by toList on Lines 7–

11. We should be able to replace f @ x on Line 23 with toList (f, x). Similarly,
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main ns = map toList ns
map f xs = case xs of

Cons x xs′ → Cons (f x) (map f xs′)
Nil→ Nil

toList n = Cons n Nil

(a)

1 main (ns):
2 v227 <- k203 {}
3 v228 <- k219 {}
4 v229 <- v227 @ v228

5 v229 @ ns
6 k219 {} x: toList (x)
7 toList (x):
8 v221 <- Consclo2 {}
9 v222 <- v221 @ x

10 v223 <- Nil

11 v222 @ v223
12 Consclo2 {} a2: Consclo1 {a2}
13 Consclo1 {a2} a1: Cons a2 a1

14 k203 {} f: k204 {f}
15 k204 {f} xs: map (xs, f)
16 map (xs, f):
17 case xs of
18 Nil -> nil ()
19 Cons x xs -> cons (f, x, xs)
20 nil (): Nil
21 cons (f, x, xs):
22 v209 <- Consclo2 {}
23 v210 <- f @ x

24 v211 <- v209 @ v210

25 v212 <- k203 {}
26 v213 <- v212 @ f

27 v214 <- v213 @ xs

28 v211 @ v214
(b)

Figure 5.13: A λC program that turns a list of elements into a list of lists
and its unoptimized translation to mil.

the recursive call to map can be replaced by a direct call to map, which implements

the body of map.

Though our analysis covers the entire program, we first concentrate on the

main block. Figure 5.14 shows how we analyze and rewrite main. The figure

shows consecutive iterations of hoopl’s interleaved analysis and rewrite process.

Rewrites occur between the parts of the figure; we highlight rewritten lines with a
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→ symbol.

1 main (ns):
2 v227 <- k203 {}
3 v228 <- k219 {}
4 v229 <- v227 @ v228

5 v229 @ ns

{ns : >}
{v227 : k203 {}}
{v228 : k219 {}}

{v229 : >}

(a)

1 main (ns):
2 v227 <- k203 {}
3 v228 <- k219 {}
4 → v229 <- k204 {v228}
5 v229 @ ns

{v229 : {k204 {v228}}

(b)

1 main (ns):
2 /////////////////////v227 <- k203 {}
3 v228 <- k219 {}
4 //////////////////////////v229 <- k204 {v228}
5 → map (ns, v228) {ns : >}, {v228 : k219 {}}

(c)

Figure 5.14: Development of facts and rewrites applied to the main block of
our example program.

Part (a) shows the initial facts gathered about each binding in main. On Line 2,

we associate v227 with the closure k203 {}. We can use this fact to rewrite the @

expression on Line 4. In Part (b), the rewritten line allows us to create a new fact,

associating v229 with k204 {v228}. The closure-capturing block k204 immediately

jumps to map. Therefore, on Line 5, we can rewrite the expression v229 @ ns to

caseEval (ns, v228). Part (c) shows this rewrite and also crosses out lines with

now-dead bindings.
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After the rewrite in Figure 5.14 (c), the cfg for the program changes. main

did not originally end in a case statement or “goto” expression, so the block did

not have any successors; after our rewrite, map becomes the successor to main.

Figure 5.15 (a) shows the cfg for our program before our rewrite; Figure 5.15 (b)

shows the cfg afterwards. We also show the facts that flow between each block

(using the parameters for each block to name the facts).

main (ns):

map (xs, f):

nil (): cons (f, x, xs):

∅ {f : >}, {x : >}, {xs : >}

(a)

main (ns):

map (xs, f):

nil (): cons (f, x, xs):

{xs : >}, {f : k219 {}}

∅ {f : k219 {}}, {x : >}, {xs : >}

(b)

Figure 5.15: Facts that flow between blocks in our example program. Part (a)
shows the cfg before we rewrite main; Part (b) shows the cfg

afterwards. The facts from main only flow to the rest of the cfg

after rewriting.
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As Figure 5.15 (b) shows, when map becomes the successor of main, the fact

{f : k219 {}} becomes available to cons. Figure 5.16 shows how we iteratively

analyze and rewrite cons using our new fact. Part (a) shows the initial facts for each

binding. In Part (b), we replace the expression f @ x on Line 3 with toList (x),

because we know the closure-capturing block k219 immediately jumps to toList.

On Line 6, we rewrite v212 @ f to k204 {f}, due to the fact {v212 : k203 {}}

and that k203 returns k204 {f}. Originally, this line gathered the first argument

for map; now, we create the closure directly. This also generates a new fact,

{v213 : k204 {f}}. We know that k204 jumps to map (i.e., the body of map).

In Part (c), we use our knowledge of v213 to rewrite Line 7 from v213 @ xs to

map (xs, f). We also cross out dead bindings that could be eliminated, after our

rewrites.

Figure 5.17 summarizes the result of applying our uncurrying optimization

(and dead-code elimination) to the program in Figure 5.13. On Line 9, we replaced

the expression f @ x with toList (x); our program now directly calls toList, rather

than repeatedly entering the closure represented by f. In Figure 5.13, Lines 25–27

implemented the recursive call to map. In Figure 5.17, Line 11 replaces those three

lines with map (xs, f), a direct recursive call. The first change does not save a

closure allocation (because f is still passed in),5 but the second change saves two

closure allocations and two @ expressions.

5We could eliminate f through an analysis that finds unused parameters.
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1 cons (f, x, xs):
2 v209 <- Consclo2 {}
3 v210 <- f @ x

4 v211 <- v209 @ v210

5 v212 <- k203 {}
6 v213 <- v212 @ f

7 v214 <- v213 @ xs

8 v211 @ v214

{f : k219 {}}, {x : >}, {xs : >}
{v209 : Consclo2 {}}

{v210 : >}
{v211 : >}

{v212 : k203 {}}
{v213 : >}
{v214 : >}

(a)

1 cons (f, x, xs):
2 v209 <- Consclo2 {}
3 →v210 <- toList (x)
4 →v211 <- Consclo1 {v210}
5 v212 <- k203 {}
6 →v213 <- k204 {f}
7 v214 <- v213 @ xs

8 v211 @ v214

{v210 : >}
{v211 : Consclo1 {v210}}

{v213 : k204 {f}}

(b)

1 cons (f, x, xs):
2 ////////////////////////////v209 <- Consclo2 {}
3 v210 <- toList (x)
4 v211 <- Consclo1 {v210}
5 /////////////////////v212 <- k203 {}
6 //////////////////////v213 <- k204 {f}
7 →v214 <- map (xs, f)
8 v211 @ v214

{v214 : >}

(c)

Figure 5.16: Development of facts and rewrites within cons, after facts begin
flowing from main.
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1 main (ns):
2 v228 <- k219 {}
3 map (ns, v228)
4 k219 {} x: toList(x)
5 toList (x):
6 v222 <- Consclo1 {x}
7 v223 <- Nil

8 v222 @ v223
9 Consclo1 {a2} a1: Cons a2 a1

1 k203 {} f: k204 {f}
2 k204 {f} xs: map (xs, f)
3 map (xs, f):
4 case xs of
5 Nil -> nil ()
6 Cons x xs -> cons (f, x, xs)
7 nil (): Nil
8 cons (f, x, xs):
9 v210 <- toList (x)

10 v211 <- Consclo1 {v210}
11 v214 <- map (xs, f)
12 v211 @ v214

Figure 5.17: Our mil program from Figure 5.13 after applying our uncurry-
ing optimization. We also removed unused blocks and unnec-
essary bindings within blocks.

Uncurrying Across Loops

Our next example demonstrates uncurrying in the presence of loops. Figure 5.18

gives our example mil program and its cfg; the program itself does not do

anything very interesting, but we are concerned with its structure rather than its

behavior. Note that we only show the normal blocks (b1, b2, and b3) in the cfg, as

the control-flow between each pair of closure-capturing blocks is not very relevant.

We annotated the cfg in Figure 5.18 (b) with the initial facts between each

block. Recall that in a forwards dataflow analysis, the in facts for a block are

computed using the meet of out facts from predecessor blocks. As b2 has two

predecessors, we explicitly show the out facts for b1 and b3. Notice that out(b3)

does not contain a fact for f; because no binding to f occurs in b3, no fact will (yet)

appear in out(b3). In turn, this means in(b2) contains the fact {f : k1 {}} from
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out(b1). In b3, the statement w <- k4 {v} ultimately creates the fact {g : k3 {}} in

out(b3). However, out(b1) contains {g : k3 {}}. Because these values differ, in(b2)

contains the fact {g : >}.

1 b1 ():
2 f <- k1 {}
3 g <- k3 {}
4 b2 (f, g)
5 b2 (f, g):
6 t <- f @ g

7 u <- g @ t

8 b3 (t, u, f)
9 b3 (t, u, f):

10 v <- f @ t

11 w <- k4 {v}
12 b2 (f, w)
13 k1 {} x: k2 {x}
14 k2 {x} y: Left y
15 k3 {} x: k4 {x}
16 k4 {x} y: Right y

b1 ():

b2 (f, g):

b3 (t, u, f):

out(b1): {f : k1 {}}, {g : k3 {}}
in(b2): {f : k1 {}}, {g : >}

{t : >}, {u : >}

out(b3): {g : k4 {v}}

(a) (b)

Figure 5.18: A mil program with looping control-flow.

The initial facts in Figure 5.18 tell us that f refers to the closure-capturing block

k1, which lets us replace the expression f @ g on Line 6 with k2 {g}. Similarly, the

same fact propagates to b3, allowing us to rewrite the expression f @ t on Line 10

to k2 {t}.

Figure 5.19 shows the rewritten program and updated facts. After these

rewrites, the fact sets reach a fixed point and the analysis stops. Applications of f

are correctly replaced with direct closure allocations, but applications of g remain

111



Chapter 5 Uncurrying

1 b1 ():
2 f <- k1 {}
3 g <- k3 {}
4 b2 (f, g)
5 b2 (f, g):
6 t <- k2 {g}
7 u <- g @ t

8 b3 (t, u, f)
9 b3 (t, u, f):

10 v <- k2 {t}
11 w <- k4 {v}
12 b2 (f, w)
13 k1 {} x: k2 {x}
14 k2 {x} y: Left y
15 k3 {} x: k4 {x}
16 k4 {x} y: Right y

b1 ():

b2 (f, g):

b3 (t, u, f):

out(b1): {f : k1 {}}, {g : k3 {}}
in(b2): {f : k1 {}}, {g : >}

{t : k2 {g}}, {u : >}, {f : k1 {}}

out(b3): {f : k1 {}}, {g : k4 {v}}

(a) (b)

Figure 5.19: Our rewritten mil program, showing that we correctly uncur-
ried f @ g in b2; g @ t remains unchanged.

as it does not always hold the same closure.

5.8.1 Soundness

Our implementation of uncurrying can produce incorrect results under two cir-

cumstances. In the first case, we can introduce free variables into a block. In

the second case, our analysis does not see facts that should be propagated to a

block, leading to unsound rewrites. We describe both cases, and possible solutions,

below.

The first case occurs when a function application is replaced with a closure that

introduces variables not declared in the containing block. When collapseTransfer
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sees a binding to a closure value, it records not only the label that the closure refers

to, but also all of the variables captured in the closure. These facts are propagated

to successor blocks. If those blocks are subsequently rewritten to allocate the

closure directly, then the variables in the closure may be “unpacked” into the block,

introducing free variables that are not properly bound.

For example, consider the mil program in Figure 5.20. In Part (a), the statement

v <- k1 {x} in b1 binds v to k1 {x}. The closure is then passed to b2, which applies

the closure to y and returns the result.

b1 (x, y):
v <- k1 {x}
b2 (v, y)

b2 (v, y):
t <- v @ y

return t
k1 {x} y: p1 (x, y)
p1 (x, y): ...

b1 (x, y):
v <- k1 {x}
b2 (v, y)

b2 (v, y):
t <- p1 (x, y)
return t

k1 {x} y: p1 (x, y)
p1 (x, y): ...

(a) (b)

Figure 5.20: A mil program that demonstrates how free variables can be
accidentally introduced by uncurrying. Part 5.20 (a) shows the
original program. In Part 5.20 (b), rewriting b2 introduced the
free variable x.

Our analysis create the fact {v, k1 {x}} when analyzing b1, which then prop-

agates to b2. In b2, we would rewrite the expression v @ y to p1 (x, y), as k1

immediately jumps to p1, producing the program shown in Part 5.20 (b). But this

introduces a free variable, x, in b2.

This problem might be solved with another dataflow analysis. After uncurry-
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ing, we would determine the free variables in each block (a backwards dataflow

analysis). Our uncurrying analysis could keep track of where each variable in

a given closure was declared. We could use that information to propagate free

variables from the block in which they are first bound to the blocks where they are

used.

The second case occurs when a block is called on the right-hand side of a bind

statement, such as v <- b (. . .). Our analysis will not propagate any facts to b in

such situations. If the values passed to the block b on the right-hand side of a <-

differ from those passed at the end of a block, then our analysis may rewrite using

partial facts.

1 b1 (x):
2 v <- k1 {}
3 w <- k2 {}
4 z <- b2 (w, y)
5 b2 (v, z)

6 b2 (v, y):
7 t <- v @ y

8 return t
9 k1 {} x: Left x

10 k2 {} x: Right x

1 b1 (x):
2 v <- k1 {}
3 w <- k2 {}
4 z <- b2 (w, y)
5 b2 (v, z)

6 b2 (v, y):
7 t <- k1 {}
8 return t
9 k1 {} x: Left x

10 k2 {} x: Right x

(a) (b)

Figure 5.21: A mil program demonstrating problems with “call” expres-
sions on the right-hand side of a bind.

Figure 5.21 demonstrates this issue. Block b1 allocates two closures, v to k1 {}

and w to k2 {}. On Line 4, the program calls b2 with w; Line 5 calls b2 with v. Our

analysis would only consider the second call to b2 and would deduce that v is
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always k1 {} in b2. Figure 5.21 (b) shows the rewritten program. In b2, t <- v @ y

has been incorrectly rewritten to t <- k1 {}, which is incorrect.

A simple solution to this problem would first scan the entire program, finding

all blocks called on the right-hand side of a bind; then those blocks would be

eliminated from further analysis. Our intuition is that while this solution is not

ideal, many programs can still be uncurried even with this restriction.

5.9 Related Work

Appel (1992, Section 6.2) describes uncurrying in the context of a compiler that

uses continuation-passing style, though cps conversion is not essential to the trans-

formation. While we described uncurrying in terms of one-argument functions,

Appel allows tuples of arguments. His approach looks for functions whose bodies

only apply a locally defined, non-recursive function. Using our λC notation with

tuples, this pattern looks like:

f (x, c) =

let g (y, k) = E

in c g

where E represents the non-recursive body of g.

To uncurry f , Appel creates a new function, f ′, that takes all arguments to f

and g at once. He then rewrites f to use f ′:

f ′ (x, c, g, y, k) = E

f (x, c) =

let g (y, k) = f ′ (x, c, g, y, k)

in c g
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This transformation preserves the original f , as not all call sites of f may be known.

Known call sites, however, can use the more efficient version, f ′. Appel describes

what makes f ′ efficient and how other optimizations can remove the unused

arguments in f ′ and f .

Like our version of uncurrying, Appel relies on other optimizations to clean

up. Unlike our version, Appel’s looks for a specific syntactic form to transform.

Our use of dataflow analysis allows us to rewrite any function application that we

can prove always uses the same closure. Appel’s version appears to only apply

to a very specific form of curried definitions, most of which are produced by the

translation to cps.

Tarditi (1996) describes an uncurrying optimization that extends Appel’s work.

In fact, Tarditi points out that Appel’s description is only guaranteed to work for

functions of two arguments; for more arguments, Appel’s transformation must be

applied in a specific order (which Appel did not describe).

Tarditi’s approach uses four passes to uncurry functions of the form

(λx. λ. y. . . . ) a b into (λ(x, y). . . . ) (a, b), where tuples represent a multi-

argument function. The first pass of Tarditi’s algorithm scans all definitions in the

program to find non-recursive, curried definitions, and records their arity (i.e., the

number of nested λs). The second pass looks for applications of curried functions

to arguments. He again scans the program, searching for specific declarations

that partially apply a curried function. He is also able to recognize subsequent

applications of previous partial applications, extending the number of arguments

associated with a given sequence of applications. The third pass of his algorithm

creates new, uncurried definitions of the curried functions found in the first pass.
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The fourth and final pass of the algorithm converts those applications found in

the second pass that are fully applied to use the new, uncurried versions of the

curried function they originally referred to.

Tarditi’s algorithm is not limited to finding curried functions of a certain

syntactic form, and it extends correctly to functions of multiple arguments. His

algorithm, however, only replaces fully-applied functions. Our analysis can replace

any candidate function application, even if it does not result in a fully applied

function.

Tolmach and Oliva (1998) do not specifically describe an uncurrying opti-

mization; rather, they describe how “closure conversion,” plus two other general

optimizations, give them uncurrying for free in their compiler for Standard ML.

Critically, their compiler uses closure-conversion to remove all higher-order func-

tions from the program and replace them with functions that return a data structure

representing the original closure. Applications of curried functions are replaced

with calls to a dispatching function that uses case discrimination to distinguish

closures of the same arity, calling the uncurried version of each curried function.

Tolmach and Oliva’s compiler uses inlining and “case splitting” to ensure the

program does not trade the cost of a partial application for the cost of a data

allocation and a call to the dispatching function. Any application of the curried

function will be inlined into the call site, as the body of the curried function just

allocates a data structure. The call to the dispatch function will now use the data

structure inlined from the curried function. The dispatch function only contains a

case statement that discriminates based on the data structure representing each

curried function. “Case splitting” replaces the entire call site with the relevant arm
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from the dispatch function, thus turning an allocation, case discrimination and

function call into just a function call.

Tolmach and Oliva’s approach does not depend on recognizing syntactic pat-

terns at all. It should recognize any known call site of a partially applied function,

and they claim it works for functions of multiple arguments as well. Our ap-

proach is similar, in that we look for bindings known to refer to closure values.

We even use a simple form of inlining, meaning we inspect the tail found in the

closure-capturing block referred to by a given closure and “inline” the tail when

it is a direct jump or closure allocation. Our use of dataflow analysis, however,

distinguishes our work, in that we do not depend on function applications to

take on a particular form. Once we determine that the left-hand side of a given @

expression always refers to the same closure, we can transform the expression by a

simple rewrite using the body of the closure-capturing block.

5.10 Conclusion

In this chapter, we described an uncurrying optimization for mil programs in terms

of the dataflow algorithm. We gave dataflow equations detailing the optimization,

setting our algorithm on a solid theoretical foundation. We implemented our

algorithm using the hoopl library, and gave a complete and detailed presentation

of that work. By example, we demonstrated the utility of our optimization. We

discussed challenges in our current implementation, and offered suggestions for

improving the algorithm in the future. Finally, we compared our implementation

to several other implementations of the uncurrying optimization in the literature.
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Conclusion & Future Work

Our work applied the dataflow algorithm to an area outside its traditional scope:

functional languages. We based our work on a monadic intermediate language (mil)

that supported high-level functional programming and exposed certain low-level

implementation details. We implemented our analysis in Haskell using the hoopl

library; we also gave a thorough description of how to implement dataflow-based

optimizations using hoopl. We then demonstrated the utility of our work by using

hoopl and mil to create a novel implementation of the uncurrying optimization.

Section 6.1 describes several optimizations we developed that are based on the

monadic properties of mil, rather than dataflow analysis. We discuss a number

of extensions to our work in Section 6.2. Section 6.3 describes challenges we en-

countered using the hoopl library, and gives some suggestions for improvements.

Section 6.4 offers our closing thoughts.

6.1 Monadic Optimizations

While this work focuses on mil, hoopl, and our uncurrying implementation, we

also developed several optimizations that relied on the monadic properties of mil.

In Section 6.1.1 we describe an inlining optimization based on the monad laws.

Section 6.1.2 describes how we can safely eliminate dead-code, again using the

monadic properties of mil.
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6.1.1 Inlining Monadic Code

Figure 6.1 shows the monad laws: Left-Unit, Right-Unit, and Associativity. While

these laws can be interpreted as specifications of behavior, they can also be inter-

preted as transformations.

do {x← return y; m} ≡ do { [y 7→ x] m} Left-Unit (6.1)
do {x← m; return x} ≡ do {m} Right-Unit (6.2)

do {x← do {y← m; n}; o} ≡ do {y← m; x← n; o} Associativity (6.3)

Figure 6.1: The monad laws, as stated by Wadler (1995). The notation “[y 7→
x] m” means that y should be substituted for x everywhere in m.

For example, the following block binds x to the value of y, keeping both

variables live between the “x <- return y” and l (x, y) statements:

b ():
x <- return y

...
l (x, y)

If no intervening statement binds x again, we can use the Left-Unit law to replace

all occurrences of x with y:

b ():
x <- return y

. . .
l (y, y)

Because we know return y produces no side-effects, we can eliminate the binding

for x. If variables represent registers, this optimization reduces the number of

registers used by the block and makes it smaller:
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b ():
. . .
l (y, y)

The Right-Unit law shortens the “tail” of mil blocks that end with a return

statement. For example, Right-Unit can be used to transform the following block:

b (. . .):
...
x <- f @ y

return x

into the shorter block:

b (. . .):
...
f @ y

Not only does this transformation eliminate a redundant return statement, it

may also allow further optimizations. In particular, if we know that the closure

represented by f refers to block b, our uncurrying optimization will transform f @

y into either a jump or an allocation.

The Associativity law provides an inlining mechanism for mil programs. The

inner monadic computation mentioned on the right-hand side of the law, do {y←

m; n}, can be an arbitrarily long monadic program. All mil blocks are monadic

programs — therefore, we can use this law to inline almost any block. For example,

consider these two blocks:

compose (f, g, x):
t1 <- g @ x

t2 <- f @ t1
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return t2

main (a, b, c):
x <- compose(a, b, c)
b (x)

Equation (6.3) lets us inline compose into main, as long as we appropriately

rename variables:

main (a, b, c):
t1 <- b @ c

t2 <- a @ t1

x <- return t2
b (x)

Notice that we can now also apply Equation (6.1), eliminating the use of x:

main (a, b, c):
t1 <- b @ c

t2 <- a @ t1

b (t2)

Mil’s syntax does not allow all monadic blocks to be inlined. Mil only allows

branching at the end of a block; therefore, blocks that end in case statements

cannot be inlined.

However, we can still transform around blocks that end in case statements.

Note that we did not implement this particular form of inlining (though we did

implement that given above). Consider the blocks b1, t and f in the following

program:

b1 (a):
t1 <- b2 (a)

122



Chapter 6 Conclusion & Future Work

...
b3 (t1)

b2 (a):
case a of

True -> t (a)
False -> f (a)

t (. . .):
...
return x

f (. . .):
...
return x

b1 binds t1 to the result of b2. b2 returns the result of either block t or f.

Because t and f do not end in a case statement, we can move the code that follows

t1’s binding in b1 to t and f:

b1 (a):
b2 (a)

b2 (a):
case a of

True -> t (a)
False -> f (a)

t (a):
...
t1 <- return x

b3 (t1)

f (. . .):
...
t1 <- return x

b3 (t1)
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This new program may be more efficient. For example, blocks t and f end in

tail calls, where before they ended in a return. We can use the Left-Unit law to

substitute x for t1 in t and f as well (which, in turn, allows us to remove t1’s

binding in both blocks as it is no longer live). We may be able to rewrite calls b1

to b2, and remove b1 altogether. Finally, the “Push Through Cases” optimization

described in Section 6.2.2 may be able to optimize t and f even further.

6.1.2 Dead-Code Elimination

Mil treats allocation as a monadic operation, and allocation can definitely cause

observable effects. However, most of the time we do not mind eliminating those

effects, as they only cause our program to behave badly. Therefore it is usually

reasonable to remove any allocation (be it a closure, thunk or constructor) that

binds to a dead variable.

For example, consider compose1, which captures the first argument to compose:

compose1 f = compose f .

And the corresponding mil code:

compose1 (): absBodyL208 {}
absBodyL208 {} f: absBlockL209 (f)
absBlockL209 (f):

v210 <- compose ()
v210 @ f

compose (): absBodyL201 {}
absBodyL201 {} f: absBodyL202 {f}
absBodyL202 {f} g: ...

We can use the Associativity law to inline the allocation returned by compose into

absBlockL209, giving us:
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absBlockL209 (f):
v210 <- absBodyL201 {}
v210 @ f

Our uncurrying optimization can determine that the expression v210 @ f evaluates

to absBodyL202 {f} (because v210 holds the closure absBodyL201 {}). We can

replace v210 @ f with absBodyL202 {f}:

absBlockL209 (f):
v210 <- absBodyL201 {}
absBodyL202 {f}

After this rewrite, v210 is no longer live. Because closure allocation has no

observable side-effect, we remove the binding, eliminating one allocation:

absBlockL209 (f):
absBodyL202 {f}

This optimization can be extended to thunk and data allocations.

6.2 Future Work

We discuss how to extend our uncurrying optimization to thunks in Section 6.2.1.

Section 6.2.2 proposes a new analysis to eliminate unnecessary allocations across

case statements.

6.2.1 Eliminating Thunks

Monadic thunks and closures share many characteristics. For example, they both

represent suspended computation, and they both capture an environment of values.

They also can be a source of inefficiency, as well. Our compiler for λC to mil
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produces many blocks that immediately invoke some thunk. For example, the

following λC definition reads a character and prints it to the screen:

main x = do
c← readChar
print c

Our compiler translates the program in this mil code (in part):

main ():
v206 <- readCharbody []
c <- invoke v206

...
readCharbody (): readChar∗()

In this program, main allocates a thunk pointing to readCharbody and binds it

to v206. The next line invokes the thunk just constructed, binding the result to c.

A straightforward adaption of our uncurrying optimization could transform this

program so it executes readCharbody directly, instead of invoking the thunk:

main ():
v206 <- readCharbody []
c <- readCharbody ()
...

Of course, we can continue to apply further optimizations to the program.

Dead-code elimination would find that v206 is no longer live, letting us eliminate

the allocation of the thunk:

main ():
c <- readCharbody ()
...
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The associativity law also lets inline the body of readCharBody into main, removing

an extra jump:

main ():
c <- readChar∗()
...

While these last transformations do not relate directly to eliminating thunks, they

do show that each optimization tends to make further optimizations possible.

6.2.2 Push Through Cases

Functional language programs commonly implement a pattern of construct/destruct,

where the program constructs a value and then inspects (or destructs) the value

shortly thereafter. Figure 6.2 shows one such program. The dec function returns

a Maybe value, indicating if its argument could be decremented or not. The loop

function discriminates on the result of dec n, immediately throwing away the Maybe

value created by dec. The “safe” decrement implemented by dec guarantees we will

not apply f to values less than 0.

Figure 6.3 shows unoptimized mil code for these two functions. loop evaluates

dec (n) on Line 2 and binds the result to v215. The case statement on the next line

immediately takes v215 apart, throwing away the allocated value just created.

Inspecting the dec block in Figure 6.3 shows that it evaluates a condition and

branches to either altTrue or altFalse. As discussed in Section 6.1.1, we cannot

directly inline loop into dec, because loop ends with a case statement. However,

we can move the body of loop into each arm of the case statement that ends loop.

We begin by inlining dec into loop. Notice that the case statement now jumps

to altTrue and altFalse, where before it jumped to altJust and altNothing:
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dec :: Int→ Maybe Int
dec i = if i > 0

then Just (i− 1)
else Nothing

loop :: Int→ (Int→ Int)→ Int
loop n f = case dec n of

Just i→ loop (f i) f
Nothing→ f 0

Figure 6.2: A program that illustrates the construct/destruct pattern.

loop (n, f):
v233 <- gt∗(i, 0)
case v233 of

True -> altTrue (i, f, n)
False -> altFalse (f, n)

We also move the original case statement from loop to the end of altTrue and

altFalse. This transformation requires that we bind the original result of altTrue

and altFalse to the variable that the original case statement inspected (v215).

For example, altTrue previously returned Just ∗(v225); now, we bind v215 to

that value. In both blocks, the value bound is immediately destructed by a case

statement:

altTrue (i, f, n):
v225 <- minus∗(i, 1)
v215 <- Just∗(v225)
case v215 of

Just i -> altJust (f, i)
Nothing -> altNothing (f)
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1 loop (n, f):
2 v215 <- dec (n)
3 case v215 of
4 Just i -> altJust (f, i)
5 Nothing -> altNothing (f)

6 dec (i):
7 v233 <- gt∗(i, 0)
8 case v233 of
9 True -> altTrue (i)

10 False -> altFalse ()

11 altNothing (f): f @ 0

12 altJust (f, n):
13 v207 <- f @ n

14 loop (v207, f)

15 altTrue (i):
16 v225 <- minus∗(i, 1)
17 Just∗(v225)

18 altFalse (): Nothing∗()

Figure 6.3: Initial form of our function.

altFalse (f, n):
v215 <- Nothing∗()
case v215 of

Just i -> altJust (f, n)
Nothing -> altNothing (f)

Dataflow analysis of altTrue and altFalse could show that each block con-

tains a case alternative that will never be executed. For example, in altTrue, v215

must always be a Just value, and the Nothing alternative will never execute. We

can eliminate the case statement in both blocks and replace them with a jump.
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Notice that, in the altTrue case, we need to recognize that i in Justi is really

v225:

altTrue (i, f, n):
v225 <- minus∗(i, 1)
v215 <- Just∗(v225)
altJust (f, v225)

altFalse (f, n):
v215 <- Nothing∗()
altNothing (f)

Dead-code elimination would find that the bindings for v215 in both blocks

is dead, and would eliminate the allocation. Figure 6.4 shows the final form of

our program, where we have eliminated the unnecessary allocation between dec

and loop. This version of the program will perform no allocations of Maybe values

whatsoever, but we are still guaranteed that f will not be applied to an index value

less than 0.

6.3 Hoopl Refinements

The hoopl library played a critical role in our work. The library presents a simple

and powerful interface for describing, analyzing and transforming cfgs. Hoopl

allowed us to explore a variety of optimizations that used dataflow analysis,

without the burden of implementing the dataflow algorithm from scratch. Of

course, by spending so much time with the library, we found some areas where the

library’s interface left us struggling to bend our algorithm to fit with hoopl’s view

of dataflow analysis. The following sections describe the issues we encountered,

and offer some possible solutions.
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loop (n, f):
v233 <- gt∗(i, 0)
case v233 of

True -> altTrue (i, f, n)
False -> altFalse (f, n)

altTrue (i, f, n):
v225 <- minus∗(i, 1)
altJust (f, v225)

altFalse (f, n):
altNothing (f)

altNothing (f): f @ 0

altJust (f, n):
v207 <- f @ n

loop (v207, f)

Figure 6.4: Final form of our function.

6.3.1 Invasive Types

Hoopl uses the O and C types (described on Page 31) to specify the shape of

each node in a cfg; only nodes with compatible types can be connected to each

other. This design allows the compiler to enforce some desirable properties; for

example, a basic block will not contain any nodes that can branch to more than

one destination. Unfortunately, this design also requires that the O and C types be

present on the client ast. In preliminary work, we implemented an ast without

using hoopl’s shape types. This choice required us to write a significant amount

of boilerplate to translate between our initial representation and one that used

hoopl’s desired types.
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“Smart” constructors could be used to reduce the boilerplate required when

using hoopl against an existing ast. For example, consider the the ast given in

Figure 3.3 on Page 33. Instead of defining CStmt using gadts, imagine we defined

CStmtX as a normal adt and CStmt as a newtype:

data CStmtX = Entry Label |
Assign Var CExpr
. . .

newtype CStmt o c = CStmt CStmtX

To create hoopl-ized values, we define a function for each CStmtX constructor,

parameterized by shape:

entry :: Label→ CStmt O C
entry l = CStmt (Entry l)
assign :: Var→ CExpr→ CStmt O O
assign v e = CStmt (Assign v e)
. . .

However, this approach still requires a fair amount of boilerplate code. Gadts

alleviate the problem somewhat (since the compiler implements “smart” construc-

tors for you), but that does not help when working against an ast that cannot be

changed. Metaprogramming techniques using Template Haskell may ultimately

be the best approach here.

6.3.2 Restricted Signatures

Hoopl does not specify transfer and rewrite functions using simple function

signatures. Instead, as detailed in Section 3.4 (Page 39), hoopl represents those

functions using the BwdTransfer, BwdRewrite, FwdTransfer and FwdRewrite types.
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Client programs cannot directly create these values; instead, hoopl defines a

function for creating each type:

mkFTransfer :: (forall e x . n e x→ f → Fact x f )→ FwdTransfer n f
mkBTransfer :: (forall e x . n e x→ Fact x f → f )→ BwdTransfer n f
mkFRewrite :: FuelMonad m⇒
(forall e x . n e x→ f → m (Maybe (Graph n e x)))
→ FwdRewrite m n f

mkBRewrite :: FuelMonad m⇒
(forall e x . n e x→ Fact x f → m (Maybe (Graph n e x)))
→ BwdRewrite m n f

Unfortunately, this scheme complicated our implementation at times. Hoopl’s

type for transfer functions only allows information to be stored in three places: the

client’s ast, the facts computed, and any values declared in some scope external

to the transfer function. Each of these locations leads to different complications.

To illustrate, imagine a forwards transfer function that analyzes a block state-

ment by statement (so it does not have access to an entire block at once), but that

also needs to know the label of the current block being analyzed. Hoopl requires

that such a function have the signature:

forall e x . n e x→ f → Fact x f

We could store the label of the current block in the client’s ast; that would mean

each value of type n would need to hold a label representing the current block.

Possible, but burdensome at least. The label of the current block could be part of

the facts computed. This works, but seems wasteful, as the label would not matter

outside each block, but it would be carried by all values of type f . We could also

capture the current label for the block in some outer scope, but that seems to imply
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we would be applying hoopl to a single block at a time, which would not work

for any inter-block analysis.

A simple accumulating parameter on transfer function would alleviate this

issue. Hoopl does allow the client program to define a custom monad that will

be used by the rewrite functions, and that can give access to intermediate results.

Unfortunately, the custom monad still does not help with the transfer function.

Earlier versions of the hoopl library allowed the client to return an arbitrary

function from the transfer and rewrite functions. While that may have been too

liberal, we certainly wished for a slightly less restricted interface during our work.

6.4 Summary

Kildall applied his dataflow algorithm to algol 60, an imperative, structured

programming language. Most work in dataflow analysis since then has focused

on imperative programming languages. We set out to explore the algorithm’s

use within the context of a functional programming language; specifically, we

hypothesized that, by compiling to a monadic intermediate language, we could

obtain a basic-block structure that would be amenable to dataflow analysis. We

intended to implement optimizations drawn from the literature of imperative and

functional compilers, showing that the algorithm could be applied in both contexts.

Mil builds on a large body of work on monadic programming, intermediate

languages, and implementation techniques for functional languages. While a

monadic intermediate language is not new, we believe mil’s combination of low-

level and high-level language features makes it unique. Mil exposes the allocation

of closures and other implementation details, but still offers high-level features like

function application and case discrimination. Mil programs, by design, consist
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of basic-block elements. Of course, many intermediate languages consist of basic

blocks, but mil combines that structure with a monadic programming model,

giving a “pure” flavor to low-level operations.

Our work made significant use of the hoopl library. Without it, we may not

have even pursued this research. While we did not contribute materially to hoopl

itself, this work offers a significant amount of expository material describing

hoopl, as well as at least one implementation of a non-trivial optimization that

cannot be found elsewhere.

Finally, our work described a novel implementation of uncurrying, based on

dataflow analysis. We showed that our optimization works across multiple blocks

and in the presence of loops. We also were able to combine uncurrying with

optimizations based on monadic transformations, though were not able to describe

those as fully here.

This work provides a complete and accurate description of our mil language,

our uncurrying optimization, and its implementation in hoopl. We hope that

future readers use our work to implement their own dataflow-based analysis, see

a standalone example of hoopl in a non-trivial setting, or even implement a mil

of their own.
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Appendix

Source Code

The source code for the λC to mil compiler, our uncurrying optimization, the dead-

code elimination example from Chapter 3, the “monadic” optimizations mentioned

in Section 6.1, and a number of other artifacts of this work (including the entire TEX

source of this document) can be downloaded from http://mil.codeslower.com.

The author can also be contacted via e-mail at jgbailey@codeslower.com.

Colophon

We typeset all elements of this document using TEX and LATEX. We created our

graphical figures with the TikZ library. We converted our literate Haskell sources

to TEX code with Hinze and Löh’s lhs2TEX pre-processor. We used Chris Monson’s

LATEX Makefile1 to orchestrate the compilation process that produced this pdf.

This document uses 12-pt Palatino for body text and 12-pt Helvetica for head-

ings and titles. Margins, line-spacing and font size conform to guidelines given by

Portland State University’s Office of Graduate Studies.

We created this version of the thesis on August 6, 2012.

1Available from http://code.google.com/p/latex-makefile/.
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